The HOMFLY-PT Polynomial
The HOMFLY-PT polynomial (see [HOMFLY] and [PT] of a knot or link is defined by the skein relation
and by the initial condition =1.
KnotTheory`
knows about the HOMFLY-PT polynomial:
(For In[1] see Setup)
In[2]:= ?HOMFLYPT
HOMFLYPT[K][a, z] computes the HOMFLY-PT (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki and Traczyk) polynomial of a knot/link K, in the variables a and z. |
In[3]:= HOMFLYPT::about
The HOMFLYPT program was written by Scott Morrison. |
Thus, for example, here's the HOMFLY-PT polynomial of the knot 8_1:
In[4]:= |
K = Knot[8, 1]; |
In[5]:= |
HOMFLYPT[Knot[8, 1]][a, z] |
Out[5]= | -2 4 6 2 2 2 4 2 a - a + a - z - a z - a z |
It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at and and to the Conway polynomial at . Indeed,
In[6]:= |
{Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]], Jones[K][q]} |
Out[6]= | -6 -5 -4 2 2 2 2 -6 -5 -4 2 2 2 2 {2 + q - q + q - -- + -- - - - q + q , 2 + q - q + q - -- + -- - - - q + q } 3 2 q 3 2 q q q q q |
In[7]:= |
{HOMFLYPT[K][1, z], Conway[K][z]} |
Out[7]= | 2 2 {1 - 3 z , 1 - 3 z } |
In our parametirzation of the link invariant, it satisfies
where is some knot or link and where is the number of components of . Let us verify this fact for the Whitehead link, L5a1:
In[8]:= |
L = Link[5, Alternating, 1]; |
In[9]:= |
Simplify[{\n (-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],\n A2Invariant[L][q]\n }] |
Out[9]= | $Failed |
[HOMFLY] ^ J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239-246.
[PT] ^ J. Przytycki and P. Traczyk, , Proc. Amer. Math. Soc. 100 (1987) 744-748.