10 4
|
|
|
|
Visit 10 4's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 4's page at Knotilus! Visit 10 4's page at the original Knot Atlas! |
Knot presentations
| Planar diagram presentation | X6271 X16,12,17,11 X12,3,13,4 X2,15,3,16 X14,5,15,6 X20,8,1,7 X18,10,19,9 X4,13,5,14 X10,18,11,17 X8,20,9,19 |
| Gauss code | 1, -4, 3, -8, 5, -1, 6, -10, 7, -9, 2, -3, 8, -5, 4, -2, 9, -7, 10, -6 |
| Dowker-Thistlethwaite code | 6 12 14 20 18 16 4 2 10 8 |
| Conway Notation | [613] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^4-5 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 27, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5-q^4+2 q^3-3 q^2+3 q-4+4 q^{-1} -3 q^{-2} +3 q^{-3} -2 q^{-4} + q^{-5} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^4+a^4-z^4 a^2-2 z^2 a^2-z^4-2 z^2-z^4 a^{-2} -3 z^2 a^{-2} -2 a^{-2} +z^2 a^{-4} +2 a^{-4} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-1} +z^9 a^{-3} +3 z^8 a^{-2} +z^8 a^{-4} +2 z^8+3 a z^7-3 z^7 a^{-1} -6 z^7 a^{-3} +3 a^2 z^6-17 z^6 a^{-2} -7 z^6 a^{-4} -7 z^6+3 a^3 z^5-10 a z^5-2 z^5 a^{-1} +11 z^5 a^{-3} +3 a^4 z^4-6 a^2 z^4+29 z^4 a^{-2} +16 z^4 a^{-4} +4 z^4+2 a^5 z^3-4 a^3 z^3+8 a z^3+7 z^3 a^{-1} -7 z^3 a^{-3} +a^6 z^2-3 a^4 z^2-16 z^2 a^{-2} -13 z^2 a^{-4} +z^2-3 a z-z a^{-1} +2 z a^{-3} +a^4+2 a^{-2} +2 a^{-4} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}+q^{10}+q^6- q^{-2} - q^{-4} - q^{-6} - q^{-8} + q^{-10} + q^{-12} + q^{-14} + q^{-16} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{86}-q^{84}+q^{82}-q^{80}-q^{74}+3 q^{72}-2 q^{70}+2 q^{68}-q^{66}+q^{62}-2 q^{60}+3 q^{58}-2 q^{56}+2 q^{48}-q^{46}+2 q^{44}-q^{42}+q^{40}+2 q^{38}-q^{36}+q^{34}+q^{32}+q^{30}+q^{26}-q^{24}+q^{22}-q^{20}-q^{14}-q^{10}+2 q^4-4 q^2+2-3 q^{-4} +4 q^{-6} -5 q^{-8} +2 q^{-10} - q^{-12} - q^{-14} +2 q^{-16} -3 q^{-18} +2 q^{-20} -2 q^{-22} - q^{-26} - q^{-28} +2 q^{-36} -2 q^{-38} + q^{-40} + q^{-42} -2 q^{-44} +5 q^{-46} -5 q^{-48} +3 q^{-50} + q^{-52} -2 q^{-54} +5 q^{-56} -4 q^{-58} +3 q^{-60} + q^{-66} -2 q^{-68} +2 q^{-70} + q^{-74} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{11}-q^9+q^7+q^3- q^{-1} - q^{-5} + q^{-7} + q^{-11} } |
| 2 | |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{57}-q^{55}+q^{51}+q^{49}-q^{47}-2 q^{45}+q^{43}+q^{41}-q^{39}-2 q^{37}+q^{35}+3 q^{33}-q^{31}-3 q^{29}-q^{27}+4 q^{25}+q^{23}-3 q^{21}-q^{19}+2 q^{17}+3 q^{15}-q^{11}-2 q^9+q^7+3 q^5+2 q^3-3 q- q^{-1} +2 q^{-3} + q^{-5} -2 q^{-7} - q^{-9} + q^{-11} - q^{-15} - q^{-17} + q^{-19} - q^{-25} + q^{-29} +2 q^{-31} + q^{-33} - q^{-37} + q^{-39} +2 q^{-41} -3 q^{-45} -2 q^{-47} +2 q^{-49} +2 q^{-51} - q^{-53} -3 q^{-55} +2 q^{-59} + q^{-61} - q^{-63} - q^{-65} + q^{-69} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{92}-q^{90}+q^{86}+q^{82}-3 q^{80}+q^{76}+q^{72}-4 q^{70}+2 q^{68}+3 q^{66}-3 q^{62}-6 q^{60}+4 q^{58}+6 q^{56}+2 q^{54}-5 q^{52}-7 q^{50}+4 q^{48}+8 q^{46}+3 q^{44}-5 q^{42}-8 q^{40}+2 q^{38}+7 q^{36}+5 q^{34}-2 q^{32}-9 q^{30}-3 q^{28}+2 q^{26}+6 q^{24}+5 q^{22}-2 q^{20}-6 q^{18}-5 q^{16}+q^{14}+7 q^{12}+4 q^{10}-3 q^8-6 q^6-4 q^4+4 q^2+6-3 q^{-4} -2 q^{-6} +3 q^{-8} +4 q^{-10} -2 q^{-12} -3 q^{-14} - q^{-16} +5 q^{-18} +6 q^{-20} -2 q^{-22} -5 q^{-24} -3 q^{-26} +4 q^{-28} +6 q^{-30} -4 q^{-34} -5 q^{-36} - q^{-38} +5 q^{-40} +2 q^{-42} -3 q^{-46} -4 q^{-48} + q^{-50} + q^{-52} +2 q^{-54} + q^{-56} -3 q^{-58} - q^{-60} -2 q^{-62} +4 q^{-66} +2 q^{-68} +3 q^{-70} -2 q^{-72} -4 q^{-74} - q^{-76} + q^{-78} +6 q^{-80} +2 q^{-82} -3 q^{-84} -4 q^{-86} -4 q^{-88} +3 q^{-90} +4 q^{-92} +2 q^{-94} - q^{-96} -5 q^{-98} - q^{-100} + q^{-102} +2 q^{-104} +2 q^{-106} - q^{-108} - q^{-110} - q^{-112} + q^{-116} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{135}-q^{133}+q^{129}-q^{123}-q^{121}+q^{117}-q^{113}+q^{109}+2 q^{107}-q^{105}-4 q^{103}-4 q^{101}+2 q^{99}+7 q^{97}+5 q^{95}-q^{93}-8 q^{91}-6 q^{89}+2 q^{87}+10 q^{85}+6 q^{83}-3 q^{81}-8 q^{79}-4 q^{77}+3 q^{75}+7 q^{73}+2 q^{71}-6 q^{69}-8 q^{67}+q^{65}+10 q^{63}+8 q^{61}-11 q^{57}-13 q^{55}-2 q^{53}+11 q^{51}+13 q^{49}+4 q^{47}-8 q^{45}-12 q^{43}-9 q^{41}+q^{39}+10 q^{37}+11 q^{35}+6 q^{33}-q^{31}-10 q^{29}-13 q^{27}-5 q^{25}+7 q^{23}+14 q^{21}+11 q^{19}-q^{17}-12 q^{15}-12 q^{13}-2 q^{11}+8 q^9+11 q^7+3 q^5-3 q^3-4 q- q^{-1} +4 q^{-3} +4 q^{-5} -2 q^{-7} -5 q^{-9} -4 q^{-11} +3 q^{-13} +7 q^{-15} +6 q^{-17} -2 q^{-19} -11 q^{-21} -10 q^{-23} - q^{-25} +9 q^{-27} +12 q^{-29} +5 q^{-31} -9 q^{-33} -15 q^{-35} -9 q^{-37} +5 q^{-39} +15 q^{-41} +14 q^{-43} -14 q^{-47} -15 q^{-49} -2 q^{-51} +11 q^{-53} +17 q^{-55} +8 q^{-57} -6 q^{-59} -15 q^{-61} -11 q^{-63} + q^{-65} +11 q^{-67} +12 q^{-69} +5 q^{-71} -5 q^{-73} -10 q^{-75} -8 q^{-77} +6 q^{-81} +6 q^{-83} +4 q^{-85} -5 q^{-89} -5 q^{-91} -2 q^{-93} - q^{-95} + q^{-97} +3 q^{-99} +3 q^{-101} + q^{-103} -3 q^{-107} -5 q^{-109} -4 q^{-111} + q^{-113} +5 q^{-115} +7 q^{-117} +5 q^{-119} - q^{-121} -7 q^{-123} -8 q^{-125} -3 q^{-127} +4 q^{-129} +8 q^{-131} +7 q^{-133} + q^{-135} -5 q^{-137} -8 q^{-139} -5 q^{-141} + q^{-143} +5 q^{-145} +6 q^{-147} +3 q^{-149} -2 q^{-151} -5 q^{-153} -3 q^{-155} - q^{-157} + q^{-159} +3 q^{-161} +2 q^{-163} - q^{-167} - q^{-169} - q^{-171} + q^{-175} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}+q^{10}+q^6- q^{-2} - q^{-4} - q^{-6} - q^{-8} + q^{-10} + q^{-12} + q^{-14} + q^{-16} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{44}-2 q^{42}+2 q^{40}-2 q^{38}+5 q^{36}-4 q^{34}+4 q^{32}-4 q^{30}+5 q^{28}-4 q^{26}+4 q^{24}-2 q^{22}+4 q^{20}-4 q^{18}-q^{12}-4 q^8-4 q^4+2 q^2-4+10 q^{-2} -7 q^{-4} +20 q^{-6} -10 q^{-8} +18 q^{-10} -14 q^{-12} +12 q^{-14} -12 q^{-16} +2 q^{-18} -5 q^{-20} -2 q^{-22} +6 q^{-24} -10 q^{-26} +11 q^{-28} -12 q^{-30} +12 q^{-32} -10 q^{-34} +6 q^{-36} -4 q^{-38} +4 q^{-40} + q^{-44} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{40}+q^{34}+q^{32}+q^{26}-2 q^{22}-2 q^{16}-q^{14}+q^{12}-q^8-q^6+1+2 q^{-2} + q^{-4} + q^{-6} +2 q^{-8} +2 q^{-10} + q^{-12} +2 q^{-14} + q^{-16} + q^{-18} - q^{-20} -2 q^{-22} -2 q^{-24} -2 q^{-26} -2 q^{-28} -2 q^{-30} + q^{-34} + q^{-36} + q^{-40} + q^{-42} + q^{-44} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-q^{34}-q^{32}+2 q^{30}-q^{26}+2 q^{24}+q^{22}+q^{18}+q^{16}-q^{14}-q^6+q^2-1- q^{-2} +2 q^{-10} + q^{-14} -2 q^{-18} - q^{-20} + q^{-26} +2 q^{-28} + q^{-32} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{21}+q^{17}+q^{13}+q^9- q^{-3} - q^{-5} -2 q^{-7} - q^{-9} - q^{-11} + q^{-13} + q^{-15} +2 q^{-17} + q^{-19} + q^{-21} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{58}-q^{54}-q^{52}+2 q^{48}+q^{46}-q^{44}-q^{42}+2 q^{38}+q^{36}-q^{32}+q^{28}+q^{26}-q^{24}-q^{22}+2 q^{18}-q^{14}-q^{12}+q^8-q^4-q^2+1- q^{-2} - q^{-4} +2 q^{-8} + q^{-10} - q^{-12} - q^{-14} +2 q^{-16} +3 q^{-18} + q^{-20} -2 q^{-22} - q^{-24} + q^{-26} + q^{-28} - q^{-30} -3 q^{-32} - q^{-34} + q^{-36} + q^{-38} - q^{-40} - q^{-42} + q^{-44} +2 q^{-46} + q^{-54} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 4"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^4-5 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5-q^4+2 q^3-3 q^2+3 q-4+4 q^{-1} -3 q^{-2} +3 q^{-3} -2 q^{-4} + q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^4+a^4-z^4 a^2-2 z^2 a^2-z^4-2 z^2-z^4 a^{-2} -3 z^2 a^{-2} -2 a^{-2} +z^2 a^{-4} +2 a^{-4} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-1} +z^9 a^{-3} +3 z^8 a^{-2} +z^8 a^{-4} +2 z^8+3 a z^7-3 z^7 a^{-1} -6 z^7 a^{-3} +3 a^2 z^6-17 z^6 a^{-2} -7 z^6 a^{-4} -7 z^6+3 a^3 z^5-10 a z^5-2 z^5 a^{-1} +11 z^5 a^{-3} +3 a^4 z^4-6 a^2 z^4+29 z^4 a^{-2} +16 z^4 a^{-4} +4 z^4+2 a^5 z^3-4 a^3 z^3+8 a z^3+7 z^3 a^{-1} -7 z^3 a^{-3} +a^6 z^2-3 a^4 z^2-16 z^2 a^{-2} -13 z^2 a^{-4} +z^2-3 a z-z a^{-1} +2 z a^{-3} +a^4+2 a^{-2} +2 a^{-4} } |
Vassiliev invariants
| V2 and V3: | (-5, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 4. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 4]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 4]] |
Out[3]= | PD[X[6, 2, 7, 1], X[16, 12, 17, 11], X[12, 3, 13, 4], X[2, 15, 3, 16],X[14, 5, 15, 6], X[20, 8, 1, 7], X[18, 10, 19, 9], X[4, 13, 5, 14],X[10, 18, 11, 17], X[8, 20, 9, 19]] |
In[4]:= | GaussCode[Knot[10, 4]] |
Out[4]= | GaussCode[1, -4, 3, -8, 5, -1, 6, -10, 7, -9, 2, -3, 8, -5, 4, -2, 9, -7, 10, -6] |
In[5]:= | BR[Knot[10, 4]] |
Out[5]= | BR[5, {-1, -1, -1, 2, -1, 2, 3, -2, 3, 4, -3, 4}] |
In[6]:= | alex = Alexander[Knot[10, 4]][t] |
Out[6]= | 3 7 2 |
In[7]:= | Conway[Knot[10, 4]][z] |
Out[7]= | 2 4 1 - 5 z - 3 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 4]} |
In[9]:= | {KnotDet[Knot[10, 4]], KnotSignature[Knot[10, 4]]} |
Out[9]= | {27, -2} |
In[10]:= | J=Jones[Knot[10, 4]][q] |
Out[10]= | -5 2 3 3 4 2 3 4 5 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 4]} |
In[12]:= | A2Invariant[Knot[10, 4]][q] |
Out[12]= | -16 -10 -6 2 4 6 8 10 12 14 16 q + q + q - q - q - q - q + q + q + q + q |
In[13]:= | Kauffman[Knot[10, 4]][a, z] |
Out[13]= | 2 2 |
In[14]:= | {Vassiliev[2][Knot[10, 4]], Vassiliev[3][Knot[10, 4]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[10, 4]][q, t] |
Out[15]= | 3 2 1 1 1 2 1 1 2 2 t |


