T(10,3)

From Knot Atlas
Revision as of 19:45, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

T(19,2).jpg

T(19,2)

T(7,4).jpg

T(7,4)

T(10,3).jpg Visit [[[:Template:KnotilusURL]] T(10,3)'s page] at Knotilus!

Visit T(10,3)'s page at the original Knot Atlas!

T(10,3) Quick Notes


T(10,3) Further Notes and Views

Knot presentations

Planar diagram presentation X34,8,35,7 X21,9,22,8 X22,36,23,35 X9,37,10,36 X10,24,11,23 X37,25,38,24 X38,12,39,11 X25,13,26,12 X26,40,27,39 X13,1,14,40 X14,28,15,27 X1,29,2,28 X2,16,3,15 X29,17,30,16 X30,4,31,3 X17,5,18,4 X18,32,19,31 X5,33,6,32 X6,20,7,19 X33,21,34,20
Gauss code -12, -13, 15, 16, -18, -19, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -1, 3, 4, -6, -7, 9, 10
Dowker-Thistlethwaite code 28 -30 32 -34 36 -38 40 -2 4 -6 8 -10 12 -14 16 -18 20 -22 24 -26
Conway Notation Data:T(10,3)/Conway Notation

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 3, 14 }
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{20}+q^{11}+q^9}
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources) Data:T(10,3)/Kauffman Polynomial
The A2 invariant Data:T(10,3)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(10,3)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (33, 165)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(10,3)/V 2,1 Data:T(10,3)/V 3,1 Data:T(10,3)/V 4,1 Data:T(10,3)/V 4,2 Data:T(10,3)/V 4,3 Data:T(10,3)/V 5,1 Data:T(10,3)/V 5,2 Data:T(10,3)/V 5,3 Data:T(10,3)/V 5,4 Data:T(10,3)/V 6,1 Data:T(10,3)/V 6,2 Data:T(10,3)/V 6,3 Data:T(10,3)/V 6,4 Data:T(10,3)/V 6,5 Data:T(10,3)/V 6,6 Data:T(10,3)/V 6,7 Data:T(10,3)/V 6,8 Data:T(10,3)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 14 is the signature of T(10,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
012345678910111213χ
41             1-1
39             1-1
37           11 0
35         1  1 0
33         11   0
31       11     0
29     1  1     0
27     11       0
25   11         0
23    1         1
21  1           1
191             1
171             1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=13}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=5}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[10, 3]]
Out[2]=  
20
In[3]:=
PD[TorusKnot[10, 3]]
Out[3]=  
PD[X[34, 8, 35, 7], X[21, 9, 22, 8], X[22, 36, 23, 35], 
 X[9, 37, 10, 36], X[10, 24, 11, 23], X[37, 25, 38, 24], 

 X[38, 12, 39, 11], X[25, 13, 26, 12], X[26, 40, 27, 39], 

 X[13, 1, 14, 40], X[14, 28, 15, 27], X[1, 29, 2, 28], 

 X[2, 16, 3, 15], X[29, 17, 30, 16], X[30, 4, 31, 3], X[17, 5, 18, 4], 

 X[18, 32, 19, 31], X[5, 33, 6, 32], X[6, 20, 7, 19], 

X[33, 21, 34, 20]]
In[4]:=
GaussCode[TorusKnot[10, 3]]
Out[4]=  
GaussCode[-12, -13, 15, 16, -18, -19, 1, 2, -4, -5, 7, 8, -10, -11, 13, 
 14, -16, -17, 19, 20, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, 

-20, -1, 3, 4, -6, -7, 9, 10]
In[5]:=
BR[TorusKnot[10, 3]]
Out[5]=  
BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]
In[6]:=
alex = Alexander[TorusKnot[10, 3]][t]
Out[6]=  
               -9              -8              -6              -5

1 + Alternating - Alternating + Alternating - Alternating +

            -3              -2              2              3
 Alternating   - Alternating   - Alternating  + Alternating  - 

            5              6              8              9
Alternating + Alternating - Alternating + Alternating
In[7]:=
Conway[TorusKnot[10, 3]][z]
Out[7]=  
        2        4        6         8        10        12        14

1 + 33 z + 264 z + 792 z + 1166 z + 946 z + 443 z + 119 z +

     16    18
17 z + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[TorusKnot[10, 3]], KnotSignature[TorusKnot[10, 3]]}
Out[9]=  
{3, 14}
In[10]:=
J=Jones[TorusKnot[10, 3]][q]
Out[10]=  
 9    11    20
q  + q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[TorusKnot[10, 3]][q]
Out[12]=  
NotAvailable
In[13]:=
Kauffman[TorusKnot[10, 3]][a, z]
Out[13]=  
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[10, 3]], Vassiliev[3][TorusKnot[10, 3]]}
Out[14]=  
{0, 165}
In[15]:=
Kh[TorusKnot[10, 3]][q, t]
Out[15]=  
 17    19              2  21              4  23              3  25

q + q + Alternating q + Alternating q + Alternating q +

            4  25              5  27              6  27
 Alternating  q   + Alternating  q   + Alternating  q   + 

            5  29              8  29              7  31
 Alternating  q   + Alternating  q   + Alternating  q   + 

            8  31              9  33              10  33
 Alternating  q   + Alternating  q   + Alternating   q   + 

            9  35              12  35              11  37
 Alternating  q   + Alternating   q   + Alternating   q   + 

            12  37              13  39              13  41
Alternating q + Alternating q + Alternating q