9 12

From Knot Atlas
Revision as of 17:09, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

9 11.gif

9_11

9 13.gif

9_13

9 12.gif Visit 9 12's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 12's page at Knotilus!

Visit 9 12's page at the original Knot Atlas!

9 12 Quick Notes


9 12 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,16,6,17 X11,1,12,18 X17,13,18,12 X7,14,8,15 X13,8,14,9 X15,6,16,7 X9,2,10,3
Gauss code -1, 9, -2, 1, -3, 8, -6, 7, -9, 2, -4, 5, -7, 6, -8, 3, -5, 4
Dowker-Thistlethwaite code 4 10 16 14 2 18 8 6 12
Conway Notation [4212]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 10, width is 5.

Braid index is 5.

A Morse Link Presentation:

9 12 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-10][-1]
Hyperbolic Volume 8.83664
A-Polynomial See Data:9 12/A-polynomial

[edit Notes for 9 12's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 12's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 35, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n84, ...}

Same Jones Polynomial (up to mirroring, ): {K11n15, ...}

Vassiliev invariants

V2 and V3: (1, -3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 12. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
3         11
1        1 -1
-1       31 2
-3      32  -1
-5     32   1
-7    33    0
-9   23     -1
-11  13      2
-13 12       -1
-15 1        1
-171         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials