In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[9, 44]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12],
X[12, 17, 13, 18], X[6, 14, 7, 13]] |
In[3]:= | GaussCode[Knot[9, 44]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6] |
In[4]:= | DTCode[Knot[9, 44]] |
Out[4]= | DTCode[4, 8, 10, -14, 2, -16, -6, -18, -12] |
In[5]:= | br = BR[Knot[9, 44]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, 1, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 44]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 44]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[9, 44]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, {4, 5}, 1} |
In[10]:= | alex = Alexander[Knot[9, 44]][t] |
Out[10]= | -2 4 2
7 + t - - - 4 t + t
t |
In[11]:= | Conway[Knot[9, 44]][z] |
Out[11]= | 4
1 + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 44]} |
In[13]:= | {KnotDet[Knot[9, 44]], KnotSignature[Knot[9, 44]]} |
Out[13]= | {17, 0} |
In[14]:= | Jones[Knot[9, 44]][q] |
Out[14]= | -5 2 2 3 3 2
3 - q + -- - -- + -- - - - 2 q + q
4 3 2 q
q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 44]} |
In[16]:= | A2Invariant[Knot[9, 44]][q] |
Out[16]= | -16 2 -6 -4 4 6 8
-1 - q + -- + q + q - q + q + q
8
q |
In[17]:= | HOMFLYPT[Knot[9, 44]][a, z] |
Out[17]= | -2 2 4 2 2 2 4 2 2 4
-2 + a + 3 a - a - 2 z + 3 a z - a z + a z |
In[18]:= | Kauffman[Knot[9, 44]][a, z] |
Out[18]= | 2
-2 2 4 z 3 5 2 z 2 2
-2 - a - 3 a - a - - - a z + a z + a z + 6 z + -- + 10 a z +
a 2
a
3
4 2 2 z 3 3 3 5 3 4 2 4
5 a z + ---- + 4 a z - a z - 3 a z - 3 z - 10 a z -
a
4 4 5 3 5 5 5 6 2 6 4 6 7
7 a z - 3 a z - 2 a z + a z + z + 3 a z + 2 a z + a z +
3 7
a z |
In[19]:= | {Vassiliev[2][Knot[9, 44]], Vassiliev[3][Knot[9, 44]]} |
Out[19]= | {0, -1} |
In[20]:= | Kh[Knot[9, 44]][q, t] |
Out[20]= | 2 1 1 1 1 1 2 1
- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
1 2 3 5 2
---- + --- + q t + q t + q t
3 q t
q t |
In[21]:= | ColouredJones[Knot[9, 44], 2][q] |
Out[21]= | -15 2 -13 5 3 4 7 -8 7 7 2
4 + q - --- - q + --- - --- - --- + -- - q - -- + -- + -- -
14 12 11 10 9 7 6 5
q q q q q q q q
9 6 4 9 2 3 4 5
-- + -- + -- - - + 4 q - 5 q + q + 2 q - q
4 3 2 q
q q q |