In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 66]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 15], X[7, 16, 8, 17],
X[15, 6, 16, 7], X[17, 20, 18, 1], X[11, 18, 12, 19],
X[19, 12, 20, 13], X[13, 8, 14, 9], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[10, 66]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 5, -4, 9, -10, 2, -7, 8, -9, 3, -5, 4, -6,
7, -8, 6] |
In[4]:= | DTCode[Knot[10, 66]] |
Out[4]= | DTCode[4, 10, 14, 16, 2, 18, 8, 6, 20, 12] |
In[5]:= | br = BR[Knot[10, 66]] |
Out[5]= | BR[4, {-1, -1, -1, 2, -1, -3, -2, -2, -2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 66]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 66]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 66]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 3, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 66]][t] |
Out[10]= | 3 9 16 2 3
-19 + -- - -- + -- + 16 t - 9 t + 3 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 66]][z] |
Out[11]= | 2 4 6
1 + 7 z + 9 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 66], Knot[11, Alternating, 245]} |
In[13]:= | {KnotDet[Knot[10, 66]], KnotSignature[Knot[10, 66]]} |
Out[13]= | {75, -6} |
In[14]:= | Jones[Knot[10, 66]][q] |
Out[14]= | -13 4 7 10 12 13 11 8 6 2 -3
q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q
12 11 10 9 8 7 6 5 4
q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 66]} |
In[16]:= | A2Invariant[Knot[10, 66]][q] |
Out[16]= | -40 2 -34 2 3 2 2 3 2 3 -12
q - --- + q - --- - --- + --- - --- + --- + --- + --- - q +
36 32 26 24 22 20 18 14
q q q q q q q q
-10
q |
In[17]:= | HOMFLYPT[Knot[10, 66]][a, z] |
Out[17]= | 6 8 10 12 6 2 8 2 10 2 12 2
2 a + 2 a - 4 a + a + 5 a z + 9 a z - 8 a z + a z +
6 4 8 4 10 4 6 6 8 6
4 a z + 8 a z - 3 a z + a z + 2 a z |
In[18]:= | Kauffman[Knot[10, 66]][a, z] |
Out[18]= | 6 8 10 12 7 9 11 6 2
-2 a + 2 a + 4 a + a + a z - 5 a z - 6 a z + 5 a z -
8 2 10 2 12 2 14 2 7 3 9 3
6 a z - 8 a z + 5 a z + 2 a z + 2 a z + 20 a z +
11 3 13 3 15 3 6 4 8 4 10 4
22 a z + a z - 3 a z - 4 a z + 8 a z + 8 a z -
12 4 14 4 16 4 7 5 9 5 11 5
13 a z - 8 a z + a z - 5 a z - 22 a z - 28 a z -
13 5 15 5 6 6 8 6 10 6 12 6
7 a z + 4 a z + a z - 8 a z - 13 a z + 3 a z +
14 6 7 7 9 7 11 7 13 7 8 8
7 a z + 2 a z + 6 a z + 11 a z + 7 a z + 3 a z +
10 8 12 8 9 9 11 9
7 a z + 4 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 66]], Vassiliev[3][Knot[10, 66]]} |
Out[19]= | {7, -17} |
In[20]:= | Kh[Knot[10, 66]][q, t] |
Out[20]= | -7 -5 1 3 1 4 3 6
q + q + ------- + ------ + ------ + ------ + ------ + ------ +
27 10 25 9 23 9 23 8 21 8 21 7
q t q t q t q t q t q t
4 6 6 7 6 4 7
------ + ------ + ------ + ------ + ------ + ------ + ------ +
19 7 19 6 17 6 17 5 15 5 15 4 13 4
q t q t q t q t q t q t q t
4 4 2 4 2
------ + ------ + ------ + ----- + ----
13 3 11 3 11 2 9 2 7
q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 66], 2][q] |
Out[21]= | -36 4 3 10 24 10 36 62 15 77 104
q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- +
35 34 33 32 31 30 29 28 27 26
q q q q q q q q q q
8 116 122 10 131 105 28 113 67 36 73
--- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- -
25 24 23 22 21 20 19 18 17 16 15
q q q q q q q q q q q
27 28 33 4 12 8 -8 2 -6
--- - --- + --- - --- - --- + -- + q - -- + q
14 13 12 11 10 9 7
q q q q q q q |