| In[1]:=     | << KnotTheory` | 
| Loading KnotTheory` (version of August 29, 2005, 15:27:48)... | 
| In[2]:= | PD[Knot[10, 134]] | 
| Out[2]=   | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[9, 15, 10, 14], X[5, 13, 6, 12], 
 X[13, 7, 14, 6], X[11, 19, 12, 18], X[15, 1, 16, 20], 
X[19, 17, 20, 16], X[17, 11, 18, 10], X[2, 8, 3, 7]] | 
| In[3]:= | GaussCode[Knot[10, 134]] | 
| Out[3]=   | GaussCode[1, -10, 2, -1, -4, 5, 10, -2, -3, 9, -6, 4, -5, 3, -7, 8, -9, 
  6, -8, 7] | 
| In[4]:= | DTCode[Knot[10, 134]] | 
| Out[4]=   | DTCode[4, 8, -12, 2, -14, -18, -6, -20, -10, -16] | 
| In[5]:= | br = BR[Knot[10, 134]] | 
| Out[5]=   | BR[4, {1, 1, 1, 2, 1, 1, 2, 3, -2, 3, 3}] | 
| In[6]:= | {First[br], Crossings[br]} | 
| Out[6]=   | {4, 11} | 
| In[7]:= | BraidIndex[Knot[10, 134]] | 
| Out[7]=   | 4 | 
| In[8]:= | Show[DrawMorseLink[Knot[10, 134]]] | 
|  |  | 
| Out[8]= | -Graphics- | 
| In[9]:= | (#[Knot[10, 134]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} | 
| Out[9]=   | {Reversible, 3, 3, 3, NotAvailable, 1} | 
| In[10]:= | alex = Alexander[Knot[10, 134]][t] | 
| Out[10]=   |      2    4    4            2      3
-3 + -- - -- + - + 4 t - 4 t  + 2 t
      3    2   t
t    t | 
| In[11]:= | Conway[Knot[10, 134]][z] | 
| Out[11]=   |        2      4      6
1 + 6 z  + 8 z  + 2 z | 
| In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[12]=   | {Knot[10, 134]} | 
| In[13]:= | {KnotDet[Knot[10, 134]], KnotSignature[Knot[10, 134]]} | 
| Out[13]=   | {23, 6} | 
| In[14]:= | Jones[Knot[10, 134]][q] | 
| Out[14]=   |  3    4      5      6      7      8      9      10    11
q  - q  + 3 q  - 3 q  + 4 q  - 4 q  + 3 q  - 3 q   + q | 
| In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[15]=   | {Knot[10, 134]} | 
| In[16]:= | A2Invariant[Knot[10, 134]][q] | 
| Out[16]=   |  10      14    16      18    20    24      26    28      30    32    38
q   + 2 q   + q   + 2 q   + q   + q   - 2 q   - q   - 2 q   - q   + q | 
| In[17]:= | HOMFLYPT[Knot[10, 134]][a, z] | 
| Out[17]=   |                      2      2      2    4       4      4    6    6
-12    3    3    4 z    3 z    7 z    z     4 z    5 z    z    z
 a    - --- + -- - ---- + ---- + ---- - --- + ---- + ---- + -- + --
        10    6    10      8      6     10     8      6     8    6
a     a    a       a      a     a      a      a     a    a | 
| In[18]:= | Kauffman[Knot[10, 134]][a, z] | 
| Out[18]=   |                                            2     2       2      2
-12    3    3    2 z   8 z   4 z   2 z   z     z     7 z    7 z
 a    + --- - -- - --- - --- - --- + --- + --- + --- - ---- + ---- + 
        10    6    13    11    9     7     14    12    10      6
      a     a    a     a     a     a     a     a     a       a
    3       3       3    4       4    4      4      5       5      5
 3 z    14 z    11 z    z     5 z    z    5 z    8 z    11 z    3 z
 ---- + ----- + ----- - --- + ---- + -- - ---- - ---- - ----- - ---- + 
  13      11      9      12    10     8     6     11      9       7
 a       a       a      a     a      a     a     a       a       a
  6       6      6    6      7      7    7    8     8
 z     3 z    3 z    z    2 z    3 z    z    z     z
 --- - ---- - ---- + -- + ---- + ---- + -- + --- + --
  12    10      8     6    11      9     7    10    8
a     a       a     a    a       a     a    a     a | 
| In[19]:= | {Vassiliev[2][Knot[10, 134]], Vassiliev[3][Knot[10, 134]]} | 
| Out[19]=   | {6, 13} | 
| In[20]:= | Kh[Knot[10, 134]][q, t] | 
| Out[20]=   |  5    7    7        9  2    11  2    11  3      13  3      13  4
q  + q  + q  t + 2 q  t  + q   t  + q   t  + 2 q   t  + 3 q   t  + 
   15  4    15  5      17  5      17  6    19  6    19  7      21  7
 q   t  + q   t  + 3 q   t  + 2 q   t  + q   t  + q   t  + 2 q   t  + 
  23  8
q   t | 
| In[21]:= | ColouredJones[Knot[10, 134], 2][q] | 
| Out[21]=   |  6    7      9      10      11      12      13      14       15
q  - q  + 4 q  - 3 q   - 3 q   + 9 q   - 3 q   - 8 q   + 10 q   - 
      17      18      19       20      21      22       23      24
 12 q   + 9 q   + 4 q   - 13 q   + 6 q   + 7 q   - 11 q   + 3 q   + 
    25      26    27      28    29
6 q   - 6 q   + q   + 2 q   - q |