L9a48

From Knot Atlas
Jump to navigationJump to search

L9a47.gif

L9a47

L9a49.gif

L9a49

L9a48.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a48 at Knotilus!

L9a48 is in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a48's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X18,14,11,13 X8,16,9,15 X14,8,15,7 X16,10,17,9 X10,18,5,17 X2536 X4,11,1,12
Gauss code {1, -8, 2, -9}, {8, -1, 5, -4, 6, -7}, {9, -2, 3, -5, 4, -6, 7, -3}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L9a48 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , , , ...) (db)
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+3 q^5-4 q^4+6 q^3-6 q^2+6 q-4+4 q^{-1} - q^{-2} + q^{-3} } (db)
Signature 2 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-4} -2 z^2 a^{-4} +z^6 a^{-2} +4 z^4 a^{-2} +a^2 z^2+5 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +3 a^2+3 a^{-2} -2 z^4-7 z^2-2 z^{-2} -6} (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8+a z^7+4 z^7 a^{-1} +3 z^7 a^{-3} +a^2 z^6+2 z^6 a^{-2} +4 z^6 a^{-4} -z^6-2 a z^5-10 z^5 a^{-1} -4 z^5 a^{-3} +4 z^5 a^{-5} -5 a^2 z^4-8 z^4 a^{-2} -4 z^4 a^{-4} +3 z^4 a^{-6} -6 z^4-3 a z^3+2 z^3 a^{-1} +z^3 a^{-3} -3 z^3 a^{-5} +z^3 a^{-7} +8 a^2 z^2+5 z^2 a^{-2} -2 z^2 a^{-6} +11 z^2+6 a z+6 z a^{-1} -5 a^2-3 a^{-2} + a^{-4} -8-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} } (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ).   
\ r
  \  
j \
-4-3-2-1012345χ
13         1-1
11        2 2
9       21 -1
7      42  2
5     44   0
3    22    0
1   35     2
-1  11      0
-3  3       3
-511        0
-71         1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-4}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a47.gif

L9a47

L9a49.gif

L9a49