T(10,3)
|
|
Visit T(10,3)'s page at Knotilus!
Visit T(10,3)'s page at the original Knot Atlas! |
T(10,3) Further Notes and Views
Knot presentations
Planar diagram presentation | X34,8,35,7 X21,9,22,8 X22,36,23,35 X9,37,10,36 X10,24,11,23 X37,25,38,24 X38,12,39,11 X25,13,26,12 X26,40,27,39 X13,1,14,40 X14,28,15,27 X1,29,2,28 X2,16,3,15 X29,17,30,16 X30,4,31,3 X17,5,18,4 X18,32,19,31 X5,33,6,32 X6,20,7,19 X33,21,34,20 |
Gauss code | -12, -13, 15, 16, -18, -19, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -1, 3, 4, -6, -7, 9, 10 |
Dowker-Thistlethwaite code | 28 -30 32 -34 36 -38 40 -2 4 -6 8 -10 12 -14 16 -18 20 -22 24 -26 |
Conway Notation | Data:T(10,3)/Conway Notation |
Knot presentations
Planar diagram presentation | X34,8,35,7 X21,9,22,8 X22,36,23,35 X9,37,10,36 X10,24,11,23 X37,25,38,24 X38,12,39,11 X25,13,26,12 X26,40,27,39 X13,1,14,40 X14,28,15,27 X1,29,2,28 X2,16,3,15 X29,17,30,16 X30,4,31,3 X17,5,18,4 X18,32,19,31 X5,33,6,32 X6,20,7,19 X33,21,34,20 |
Gauss code | |
Dowker-Thistlethwaite code | 28 -30 32 -34 36 -38 40 -2 4 -6 8 -10 12 -14 16 -18 20 -22 24 -26 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(10,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, 14 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(10,3)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3: | (33, 165) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 14 is the signature of T(10,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | χ | |||||||||
41 | 1 | -1 | ||||||||||||||||||||||
39 | 1 | -1 | ||||||||||||||||||||||
37 | 1 | 1 | 0 | |||||||||||||||||||||
35 | 1 | 1 | 0 | |||||||||||||||||||||
33 | 1 | 1 | 0 | |||||||||||||||||||||
31 | 1 | 1 | 0 | |||||||||||||||||||||
29 | 1 | 1 | 0 | |||||||||||||||||||||
27 | 1 | 1 | 0 | |||||||||||||||||||||
25 | 1 | 1 | 0 | |||||||||||||||||||||
23 | 1 | 1 | ||||||||||||||||||||||
21 | 1 | 1 | ||||||||||||||||||||||
19 | 1 | 1 | ||||||||||||||||||||||
17 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[10, 3]] |
Out[2]= | 20 |
In[3]:= | PD[TorusKnot[10, 3]] |
Out[3]= | PD[X[34, 8, 35, 7], X[21, 9, 22, 8], X[22, 36, 23, 35],X[9, 37, 10, 36], X[10, 24, 11, 23], X[37, 25, 38, 24], X[38, 12, 39, 11], X[25, 13, 26, 12], X[26, 40, 27, 39], X[13, 1, 14, 40], X[14, 28, 15, 27], X[1, 29, 2, 28], X[2, 16, 3, 15], X[29, 17, 30, 16], X[30, 4, 31, 3], X[17, 5, 18, 4], X[18, 32, 19, 31], X[5, 33, 6, 32], X[6, 20, 7, 19],X[33, 21, 34, 20]] |
In[4]:= | GaussCode[TorusKnot[10, 3]] |
Out[4]= | GaussCode[-12, -13, 15, 16, -18, -19, 1, 2, -4, -5, 7, 8, -10, -11, 13,14, -16, -17, 19, 20, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18,-20, -1, 3, 4, -6, -7, 9, 10] |
In[5]:= | BR[TorusKnot[10, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[10, 3]][t] |
Out[6]= | -9 -8 -6 -5 -3 -2 2 3 5 6 8 9 1 + t - t + t - t + t - t - t + t - t + t - t + t |
In[7]:= | Conway[TorusKnot[10, 3]][z] |
Out[7]= | 2 4 6 8 10 12 14 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[10, 3]], KnotSignature[TorusKnot[10, 3]]} |
Out[9]= | {3, 14} |
In[10]:= | J=Jones[TorusKnot[10, 3]][q] |
Out[10]= | 9 11 20 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[10, 3]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[10, 3]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[10, 3]], Vassiliev[3][TorusKnot[10, 3]]} |
Out[14]= | {0, 165} |
In[15]:= | Kh[TorusKnot[10, 3]][q, t] |
Out[15]= | 17 19 21 2 25 3 23 4 25 4 27 5 29 5 |