K11a162

From Knot Atlas
Revision as of 16:22, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a161.gif

K11a161

K11a163.gif

K11a163

K11a162.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a162 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X18,5,19,6 X14,7,15,8 X16,10,17,9 X2,11,3,12 X6,13,7,14 X20,16,21,15 X22,17,1,18 X12,20,13,19 X8,21,9,22
Gauss code 1, -6, 2, -1, 3, -7, 4, -11, 5, -2, 6, -10, 7, -4, 8, -5, 9, -3, 10, -8, 11, -9
Dowker-Thistlethwaite code 4 10 18 14 16 2 6 20 22 12 8
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a162 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a162/ThurstonBennequinNumber
Hyperbolic Volume 18.245
A-Polynomial See Data:K11a162/A-polynomial

[edit Notes for K11a162's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for K11a162's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 167, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, -3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of K11a162. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
7           11
5          4 -4
3         71 6
1        104  -6
-1       147   7
-3      1411    -3
-5     1313     0
-7    1014      4
-9   713       -6
-11  310        7
-13 17         -6
-15 3          3
-171           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a161.gif

K11a161

K11a163.gif

K11a163