K11a163
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X18,5,19,6 X14,8,15,7 X16,10,17,9 X2,11,3,12 X20,14,21,13 X8,16,9,15 X22,17,1,18 X12,20,13,19 X6,21,7,22 |
| Gauss code | 1, -6, 2, -1, 3, -11, 4, -8, 5, -2, 6, -10, 7, -4, 8, -5, 9, -3, 10, -7, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 18 14 16 2 20 8 22 12 6 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+6 t^3-15 t^2+24 t-27+24 t^{-1} -15 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-2 z^6+z^4+2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 119, 2 } |
| Jones polynomial | [math]\displaystyle{ q^7-4 q^6+8 q^5-13 q^4+17 q^3-19 q^2+19 q-15+12 q^{-1} -7 q^{-2} +3 q^{-3} - q^{-4} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-9 z^4 a^{-2} +3 z^4 a^{-4} +8 z^4-3 a^2 z^2-7 z^2 a^{-2} +2 z^2 a^{-4} +10 z^2-2 a^2-2 a^{-2} +5 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+4 a z^9+11 z^9 a^{-1} +7 z^9 a^{-3} +3 a^2 z^8+12 z^8 a^{-2} +11 z^8 a^{-4} +4 z^8+a^3 z^7-11 a z^7-28 z^7 a^{-1} -5 z^7 a^{-3} +11 z^7 a^{-5} -11 a^2 z^6-44 z^6 a^{-2} -17 z^6 a^{-4} +8 z^6 a^{-6} -30 z^6-4 a^3 z^5+4 a z^5+13 z^5 a^{-1} -13 z^5 a^{-3} -14 z^5 a^{-5} +4 z^5 a^{-7} +13 a^2 z^4+40 z^4 a^{-2} +8 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +37 z^4+5 a^3 z^3+6 a z^3+6 z^3 a^{-1} +12 z^3 a^{-3} +5 z^3 a^{-5} -2 z^3 a^{-7} -7 a^2 z^2-14 z^2 a^{-2} -2 z^2 a^{-4} +z^2 a^{-6} -18 z^2-2 a^3 z-4 a z-4 z a^{-1} -2 z a^{-3} +2 a^2+2 a^{-2} +5 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{12}-2 q^6+3 q^4-q^2+3+3 q^{-2} -2 q^{-4} +4 q^{-6} -4 q^{-8} +2 q^{-10} - q^{-12} -2 q^{-14} +2 q^{-16} -2 q^{-18} + q^{-20} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{60}-2 q^{58}+6 q^{56}-11 q^{54}+15 q^{52}-18 q^{50}+9 q^{48}+12 q^{46}-48 q^{44}+91 q^{42}-123 q^{40}+113 q^{38}-47 q^{36}-78 q^{34}+225 q^{32}-330 q^{30}+336 q^{28}-214 q^{26}-25 q^{24}+288 q^{22}-482 q^{20}+515 q^{18}-346 q^{16}+48 q^{14}+262 q^{12}-454 q^{10}+448 q^8-255 q^6-33 q^4+292 q^2-393+310 q^{-2} -59 q^{-4} -236 q^{-6} +464 q^{-8} -507 q^{-10} +354 q^{-12} -51 q^{-14} -304 q^{-16} +578 q^{-18} -666 q^{-20} +535 q^{-22} -213 q^{-24} -177 q^{-26} +493 q^{-28} -622 q^{-30} +507 q^{-32} -224 q^{-34} -113 q^{-36} +354 q^{-38} -407 q^{-40} +265 q^{-42} -5 q^{-44} -237 q^{-46} +357 q^{-48} -301 q^{-50} +97 q^{-52} +145 q^{-54} -336 q^{-56} +400 q^{-58} -320 q^{-60} +149 q^{-62} +55 q^{-64} -222 q^{-66} +302 q^{-68} -296 q^{-70} +215 q^{-72} -99 q^{-74} -16 q^{-76} +106 q^{-78} -157 q^{-80} +161 q^{-82} -127 q^{-84} +77 q^{-86} -19 q^{-88} -26 q^{-90} +51 q^{-92} -61 q^{-94} +51 q^{-96} -32 q^{-98} +15 q^{-100} + q^{-102} -8 q^{-104} +10 q^{-106} -10 q^{-108} +6 q^{-110} -3 q^{-112} + q^{-114} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a163"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+6 t^3-15 t^2+24 t-27+24 t^{-1} -15 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-2 z^6+z^4+2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 119, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^7-4 q^6+8 q^5-13 q^4+17 q^3-19 q^2+19 q-15+12 q^{-1} -7 q^{-2} +3 q^{-3} - q^{-4} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-9 z^4 a^{-2} +3 z^4 a^{-4} +8 z^4-3 a^2 z^2-7 z^2 a^{-2} +2 z^2 a^{-4} +10 z^2-2 a^2-2 a^{-2} +5 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+4 a z^9+11 z^9 a^{-1} +7 z^9 a^{-3} +3 a^2 z^8+12 z^8 a^{-2} +11 z^8 a^{-4} +4 z^8+a^3 z^7-11 a z^7-28 z^7 a^{-1} -5 z^7 a^{-3} +11 z^7 a^{-5} -11 a^2 z^6-44 z^6 a^{-2} -17 z^6 a^{-4} +8 z^6 a^{-6} -30 z^6-4 a^3 z^5+4 a z^5+13 z^5 a^{-1} -13 z^5 a^{-3} -14 z^5 a^{-5} +4 z^5 a^{-7} +13 a^2 z^4+40 z^4 a^{-2} +8 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +37 z^4+5 a^3 z^3+6 a z^3+6 z^3 a^{-1} +12 z^3 a^{-3} +5 z^3 a^{-5} -2 z^3 a^{-7} -7 a^2 z^2-14 z^2 a^{-2} -2 z^2 a^{-4} +z^2 a^{-6} -18 z^2-2 a^3 z-4 a z-4 z a^{-1} -2 z a^{-3} +2 a^2+2 a^{-2} +5 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a66,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a163"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+6 t^3-15 t^2+24 t-27+24 t^{-1} -15 t^{-2} +6 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ q^7-4 q^6+8 q^5-13 q^4+17 q^3-19 q^2+19 q-15+12 q^{-1} -7 q^{-2} +3 q^{-3} - q^{-4} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a66,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a163. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



