K11a162
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X18,5,19,6 X14,7,15,8 X16,10,17,9 X2,11,3,12 X6,13,7,14 X20,16,21,15 X22,17,1,18 X12,20,13,19 X8,21,9,22 |
| Gauss code | 1, -6, 2, -1, 3, -7, 4, -11, 5, -2, 6, -10, 7, -4, 8, -5, 9, -3, 10, -8, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 18 14 16 2 6 20 22 12 8 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+7 t^3-20 t^2+35 t-41+35 t^{-1} -20 t^{-2} +7 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-z^6+2 z^4+2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 167, -2 } |
| Jones polynomial | [math]\displaystyle{ q^3-5 q^2+11 q-17+24 q^{-1} -27 q^{-2} +27 q^{-3} -23 q^{-4} +17 q^{-5} -10 q^{-6} +4 q^{-7} - q^{-8} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^8+2 a^4 z^6-4 a^2 z^6+z^6-a^6 z^4+6 a^4 z^4-5 a^2 z^4+2 z^4-2 a^6 z^2+5 a^4 z^2-a^2 z^2-a^6+a^4+a^2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 3 a^4 z^{10}+3 a^2 z^{10}+9 a^5 z^9+18 a^3 z^9+9 a z^9+12 a^6 z^8+20 a^4 z^8+18 a^2 z^8+10 z^8+9 a^7 z^7-2 a^5 z^7-27 a^3 z^7-11 a z^7+5 z^7 a^{-1} +4 a^8 z^6-18 a^6 z^6-53 a^4 z^6-54 a^2 z^6+z^6 a^{-2} -22 z^6+a^9 z^5-13 a^7 z^5-18 a^5 z^5-2 a^3 z^5-7 a z^5-9 z^5 a^{-1} -4 a^8 z^4+13 a^6 z^4+42 a^4 z^4+39 a^2 z^4-z^4 a^{-2} +13 z^4-a^9 z^3+9 a^7 z^3+18 a^5 z^3+13 a^3 z^3+8 a z^3+3 z^3 a^{-1} +a^8 z^2-6 a^6 z^2-13 a^4 z^2-7 a^2 z^2-z^2-3 a^7 z-5 a^5 z-3 a^3 z-a z+a^6+a^4-a^2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{24}+q^{22}-3 q^{18}+4 q^{16}-4 q^{14}+2 q^{12}+2 q^{10}-3 q^8+6 q^6-5 q^4+5 q^2-2 q^{-2} +3 q^{-4} -3 q^{-6} + q^{-8} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{128}-3 q^{126}+7 q^{124}-13 q^{122}+17 q^{120}-19 q^{118}+12 q^{116}+11 q^{114}-46 q^{112}+94 q^{110}-138 q^{108}+151 q^{106}-118 q^{104}+17 q^{102}+152 q^{100}-344 q^{98}+509 q^{96}-563 q^{94}+427 q^{92}-103 q^{90}-372 q^{88}+858 q^{86}-1159 q^{84}+1122 q^{82}-679 q^{80}-70 q^{78}+863 q^{76}-1399 q^{74}+1437 q^{72}-936 q^{70}+69 q^{68}+791 q^{66}-1265 q^{64}+1134 q^{62}-429 q^{60}-505 q^{58}+1243 q^{56}-1419 q^{54}+900 q^{52}+100 q^{50}-1198 q^{48}+1938 q^{46}-1983 q^{44}+1306 q^{42}-122 q^{40}-1126 q^{38}+1989 q^{36}-2169 q^{34}+1607 q^{32}-550 q^{30}-614 q^{28}+1451 q^{26}-1645 q^{24}+1181 q^{22}-254 q^{20}-695 q^{18}+1248 q^{16}-1177 q^{14}+500 q^{12}+447 q^{10}-1235 q^8+1534 q^6-1190 q^4+367 q^2+595-1310 q^{-2} +1523 q^{-4} -1208 q^{-6} +535 q^{-8} +190 q^{-10} -721 q^{-12} +919 q^{-14} -794 q^{-16} +480 q^{-18} -114 q^{-20} -162 q^{-22} +286 q^{-24} -290 q^{-26} +206 q^{-28} -102 q^{-30} +23 q^{-32} +28 q^{-34} -42 q^{-36} +36 q^{-38} -24 q^{-40} +11 q^{-42} -4 q^{-44} + q^{-46} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a162"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+7 t^3-20 t^2+35 t-41+35 t^{-1} -20 t^{-2} +7 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-z^6+2 z^4+2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 167, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^3-5 q^2+11 q-17+24 q^{-1} -27 q^{-2} +27 q^{-3} -23 q^{-4} +17 q^{-5} -10 q^{-6} +4 q^{-7} - q^{-8} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^8+2 a^4 z^6-4 a^2 z^6+z^6-a^6 z^4+6 a^4 z^4-5 a^2 z^4+2 z^4-2 a^6 z^2+5 a^4 z^2-a^2 z^2-a^6+a^4+a^2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 3 a^4 z^{10}+3 a^2 z^{10}+9 a^5 z^9+18 a^3 z^9+9 a z^9+12 a^6 z^8+20 a^4 z^8+18 a^2 z^8+10 z^8+9 a^7 z^7-2 a^5 z^7-27 a^3 z^7-11 a z^7+5 z^7 a^{-1} +4 a^8 z^6-18 a^6 z^6-53 a^4 z^6-54 a^2 z^6+z^6 a^{-2} -22 z^6+a^9 z^5-13 a^7 z^5-18 a^5 z^5-2 a^3 z^5-7 a z^5-9 z^5 a^{-1} -4 a^8 z^4+13 a^6 z^4+42 a^4 z^4+39 a^2 z^4-z^4 a^{-2} +13 z^4-a^9 z^3+9 a^7 z^3+18 a^5 z^3+13 a^3 z^3+8 a z^3+3 z^3 a^{-1} +a^8 z^2-6 a^6 z^2-13 a^4 z^2-7 a^2 z^2-z^2-3 a^7 z-5 a^5 z-3 a^3 z-a z+a^6+a^4-a^2 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a162"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+7 t^3-20 t^2+35 t-41+35 t^{-1} -20 t^{-2} +7 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ q^3-5 q^2+11 q-17+24 q^{-1} -27 q^{-2} +27 q^{-3} -23 q^{-4} +17 q^{-5} -10 q^{-6} +4 q^{-7} - q^{-8} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, -3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11a162. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



