K11a164
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X18,6,19,5 X14,8,15,7 X16,9,17,10 X2,11,3,12 X20,13,21,14 X22,16,1,15 X12,17,13,18 X6,20,7,19 X8,21,9,22 |
| Gauss code | 1, -6, 2, -1, 3, -10, 4, -11, 5, -2, 6, -9, 7, -4, 8, -5, 9, -3, 10, -7, 11, -8 |
| Dowker-Thistlethwaite code | 4 10 18 14 16 2 20 22 12 6 8 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-7 t^3+20 t^2-35 t+43-35 t^{-1} +20 t^{-2} -7 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+z^6-2 z^4-2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 169, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^5+5 q^4-11 q^3+18 q^2-24 q+28-27 q^{-1} +23 q^{-2} -17 q^{-3} +10 q^{-4} -4 q^{-5} + q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +4 z^6+a^4 z^4-6 a^2 z^4-2 z^4 a^{-2} +5 z^4+2 a^4 z^2-5 a^2 z^2+z^2+a^4-a^2+ a^{-2} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 3 a^2 z^{10}+3 z^{10}+8 a^3 z^9+18 a z^9+10 z^9 a^{-1} +8 a^4 z^8+16 a^2 z^8+14 z^8 a^{-2} +22 z^8+4 a^5 z^7-10 a^3 z^7-27 a z^7-2 z^7 a^{-1} +11 z^7 a^{-3} +a^6 z^6-17 a^4 z^6-49 a^2 z^6-19 z^6 a^{-2} +5 z^6 a^{-4} -55 z^6-8 a^5 z^5-3 a^3 z^5+a z^5-19 z^5 a^{-1} -14 z^5 a^{-3} +z^5 a^{-5} -2 a^6 z^4+13 a^4 z^4+41 a^2 z^4+6 z^4 a^{-2} -4 z^4 a^{-4} +36 z^4+5 a^5 z^3+5 a^3 z^3+8 a z^3+12 z^3 a^{-1} +4 z^3 a^{-3} +a^6 z^2-6 a^4 z^2-13 a^2 z^2+z^2 a^{-2} -5 z^2-a^5 z-a^3 z-a z-z a^{-1} +a^4+a^2- a^{-2} }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{18}-q^{16}+3 q^{12}-4 q^{10}+4 q^8-2 q^6-2 q^4+4 q^2-5+6 q^{-2} -4 q^{-4} + q^{-6} +3 q^{-8} -3 q^{-10} +3 q^{-12} - q^{-14} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{94}-3 q^{92}+8 q^{90}-16 q^{88}+23 q^{86}-28 q^{84}+20 q^{82}+10 q^{80}-63 q^{78}+139 q^{76}-210 q^{74}+232 q^{72}-166 q^{70}-19 q^{68}+310 q^{66}-612 q^{64}+808 q^{62}-756 q^{60}+371 q^{58}+267 q^{56}-968 q^{54}+1451 q^{52}-1462 q^{50}+947 q^{48}-31 q^{46}-947 q^{44}+1580 q^{42}-1599 q^{40}+975 q^{38}+18 q^{36}-939 q^{34}+1370 q^{32}-1120 q^{30}+316 q^{28}+702 q^{26}-1454 q^{24}+1593 q^{22}-1032 q^{20}-64 q^{18}+1251 q^{16}-2080 q^{14}+2211 q^{12}-1558 q^{10}+365 q^8+973 q^6-1971 q^4+2260 q^2-1767+683 q^{-2} +538 q^{-4} -1418 q^{-6} +1613 q^{-8} -1076 q^{-10} +123 q^{-12} +820 q^{-14} -1311 q^{-16} +1130 q^{-18} -397 q^{-20} -574 q^{-22} +1335 q^{-24} -1563 q^{-26} +1201 q^{-28} -394 q^{-30} -496 q^{-32} +1148 q^{-34} -1369 q^{-36} +1146 q^{-38} -627 q^{-40} +27 q^{-42} +446 q^{-44} -687 q^{-46} +681 q^{-48} -496 q^{-50} +252 q^{-52} -18 q^{-54} -141 q^{-56} +203 q^{-58} -199 q^{-60} +141 q^{-62} -73 q^{-64} +21 q^{-66} +16 q^{-68} -28 q^{-70} +27 q^{-72} -20 q^{-74} +10 q^{-76} -4 q^{-78} + q^{-80} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a164"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-7 t^3+20 t^2-35 t+43-35 t^{-1} +20 t^{-2} -7 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+z^6-2 z^4-2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 169, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^5+5 q^4-11 q^3+18 q^2-24 q+28-27 q^{-1} +23 q^{-2} -17 q^{-3} +10 q^{-4} -4 q^{-5} + q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +4 z^6+a^4 z^4-6 a^2 z^4-2 z^4 a^{-2} +5 z^4+2 a^4 z^2-5 a^2 z^2+z^2+a^4-a^2+ a^{-2} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 3 a^2 z^{10}+3 z^{10}+8 a^3 z^9+18 a z^9+10 z^9 a^{-1} +8 a^4 z^8+16 a^2 z^8+14 z^8 a^{-2} +22 z^8+4 a^5 z^7-10 a^3 z^7-27 a z^7-2 z^7 a^{-1} +11 z^7 a^{-3} +a^6 z^6-17 a^4 z^6-49 a^2 z^6-19 z^6 a^{-2} +5 z^6 a^{-4} -55 z^6-8 a^5 z^5-3 a^3 z^5+a z^5-19 z^5 a^{-1} -14 z^5 a^{-3} +z^5 a^{-5} -2 a^6 z^4+13 a^4 z^4+41 a^2 z^4+6 z^4 a^{-2} -4 z^4 a^{-4} +36 z^4+5 a^5 z^3+5 a^3 z^3+8 a z^3+12 z^3 a^{-1} +4 z^3 a^{-3} +a^6 z^2-6 a^4 z^2-13 a^2 z^2+z^2 a^{-2} -5 z^2-a^5 z-a^3 z-a z-z a^{-1} +a^4+a^2- a^{-2} }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a164"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-7 t^3+20 t^2-35 t+43-35 t^{-1} +20 t^{-2} -7 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ -q^5+5 q^4-11 q^3+18 q^2-24 q+28-27 q^{-1} +23 q^{-2} -17 q^{-3} +10 q^{-4} -4 q^{-5} + q^{-6} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-2, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a164. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



