K11a164

From Knot Atlas
Jump to navigationJump to search

K11a163.gif

K11a163

K11a165.gif

K11a165

K11a164.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a164 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X18,6,19,5 X14,8,15,7 X16,9,17,10 X2,11,3,12 X20,13,21,14 X22,16,1,15 X12,17,13,18 X6,20,7,19 X8,21,9,22
Gauss code 1, -6, 2, -1, 3, -10, 4, -11, 5, -2, 6, -9, 7, -4, 8, -5, 9, -3, 10, -7, 11, -8
Dowker-Thistlethwaite code 4 10 18 14 16 2 20 22 12 6 8
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation K11a164 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a164/ThurstonBennequinNumber
Hyperbolic Volume 18.3585
A-Polynomial See Data:K11a164/A-polynomial

[edit Notes for K11a164's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a164's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 169, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-2, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a164. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          4 4
7         71 -6
5        114  7
3       137   -6
1      1511    4
-1     1314     1
-3    1014      -4
-5   713       6
-7  310        -7
-9 17         6
-11 3          -3
-131           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a163.gif

K11a163

K11a165.gif

K11a165