K11a106

From Knot Atlas
Revision as of 16:22, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a105.gif

K11a105

K11a107.gif

K11a107

K11a106.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a106 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X14,5,15,6 X16,7,17,8 X2,10,3,9 X20,12,21,11 X18,13,19,14 X6,15,7,16 X8,17,9,18 X22,20,1,19 X12,22,13,21
Gauss code 1, -5, 2, -1, 3, -8, 4, -9, 5, -2, 6, -11, 7, -3, 8, -4, 9, -7, 10, -6, 11, -10
Dowker-Thistlethwaite code 4 10 14 16 2 20 18 6 8 22 12
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a106 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a106's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 93, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a194, K11a346,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a106. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          2 -2
9         31 2
7        62  -4
5       73   4
3      76    -1
1     87     1
-1    68      2
-3   47       -3
-5  26        4
-7 14         -3
-9 2          2
-111           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a105.gif

K11a105

K11a107.gif

K11a107