9 5

From Knot Atlas
Revision as of 20:46, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 4.gif

9_4

9 6.gif

9_6

9 5.gif Visit 9 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 5's page at Knotilus!

Visit 9 5's page at the original Knot Atlas!

9 5 Quick Notes


9 5 Further Notes and Views

Knot presentations

Planar diagram presentation X6271 X14,6,15,5 X18,8,1,7 X16,10,17,9 X10,16,11,15 X8,18,9,17 X2,14,3,13 X12,4,13,3 X4,12,5,11
Gauss code 1, -7, 8, -9, 2, -1, 3, -6, 4, -5, 9, -8, 7, -2, 5, -4, 6, -3
Dowker-Thistlethwaite code 6 12 14 18 16 4 2 10 8
Conway Notation [513]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 1
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-12]
Hyperbolic Volume 5.69844
A-Polynomial See Data:9 5/A-polynomial

[edit Notes for 9 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 23, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (6, 15)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
0123456789χ
21         1-1
19          0
17       21 -1
15      1   1
13     22   0
11    21    1
9   12     1
7  22      0
5  1       1
312        -1
11         1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 5]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 5]]
Out[3]=  
PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[18, 8, 1, 7], X[16, 10, 17, 9], 
 X[10, 16, 11, 15], X[8, 18, 9, 17], X[2, 14, 3, 13], X[12, 4, 13, 3], 

X[4, 12, 5, 11]]
In[4]:=
GaussCode[Knot[9, 5]]
Out[4]=  
GaussCode[1, -7, 8, -9, 2, -1, 3, -6, 4, -5, 9, -8, 7, -2, 5, -4, 6, -3]
In[5]:=
BR[Knot[9, 5]]
Out[5]=  
BR[5, {1, 1, 2, -1, 2, 2, 3, -2, 3, 4, -3, 4}]
In[6]:=
alex = Alexander[Knot[9, 5]][t]
Out[6]=  
      6

-11 + - + 6 t

t
In[7]:=
Conway[Knot[9, 5]][z]
Out[7]=  
       2
1 + 6 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 5]}
In[9]:=
{KnotDet[Knot[9, 5]], KnotSignature[Knot[9, 5]]}
Out[9]=  
{23, 2}
In[10]:=
J=Jones[Knot[9, 5]][q]
Out[10]=  
       2      3      4      5      6      7      8    9    10
q - 2 q  + 3 q  - 3 q  + 4 q  - 3 q  + 3 q  - 2 q  + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 5]}
In[12]:=
A2Invariant[Knot[9, 5]][q]
Out[12]=  
 2    4    8    12    14    16    18    22    26    30    32
q  - q  + q  + q   + q   + q   + q   + q   - q   - q   - q
In[13]:=
Kauffman[Knot[9, 5]][a, z]
Out[13]=  
                                  2      2      2      2    2       3
-10    -6    -4   6 z   6 z   3 z    4 z    3 z    3 z    z    11 z

a - a + a - --- - --- - ---- + ---- + ---- - ---- + -- + ----- +

                   11    9     10      8      6      4     2     11
                  a     a     a       a      a      a     a     a

     3    3      3      3      4      4      4      4      5       5
 18 z    z    4 z    2 z    7 z    3 z    7 z    3 z    6 z    14 z
 ----- + -- - ---- + ---- + ---- - ---- - ---- + ---- - ---- - ----- - 
   9      7     5      3     10      8      6      4     11      9
  a      a     a      a     a       a      a      a     a       a

    5      5      6      6      6    7       7      7    8     8
 5 z    3 z    5 z    2 z    3 z    z     3 z    2 z    z     z
 ---- + ---- - ---- - ---- + ---- + --- + ---- + ---- + --- + --
   7      5     10      8      6     11     9      7     10    8
a a a a a a a a a a
In[14]:=
{Vassiliev[2][Knot[9, 5]], Vassiliev[3][Knot[9, 5]]}
Out[14]=  
{0, 15}
In[15]:=
Kh[Knot[9, 5]][q, t]
Out[15]=  
     3      3      5  2      7  2      7  3    9  3      9  4

q + q + 2 q t + q t + 2 q t + 2 q t + q t + 2 q t +

    11  4    11  5      13  5      13  6    15  6      17  7
 2 q   t  + q   t  + 2 q   t  + 2 q   t  + q   t  + 2 q   t  + 

  17  8    21  9
q t + q t