10 4
|
|
|
|
Visit 10 4's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 4's page at Knotilus! Visit 10 4's page at the original Knot Atlas! |
10 4 Quick Notes |
Knot presentations
| Planar diagram presentation | X6271 X16,12,17,11 X12,3,13,4 X2,15,3,16 X14,5,15,6 X20,8,1,7 X18,10,19,9 X4,13,5,14 X10,18,11,17 X8,20,9,19 |
| Gauss code | 1, -4, 3, -8, 5, -1, 6, -10, 7, -9, 2, -3, 8, -5, 4, -2, 9, -7, 10, -6 |
| Dowker-Thistlethwaite code | 6 12 14 20 18 16 4 2 10 8 |
| Conway Notation | [613] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}+q^{10}+q^6- q^{-2} - q^{-4} - q^{-6} - q^{-8} + q^{-10} + q^{-12} + q^{-14} + q^{-16} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{44}-2 q^{42}+2 q^{40}-2 q^{38}+5 q^{36}-4 q^{34}+4 q^{32}-4 q^{30}+5 q^{28}-4 q^{26}+4 q^{24}-2 q^{22}+4 q^{20}-4 q^{18}-q^{12}-4 q^8-4 q^4+2 q^2-4+10 q^{-2} -7 q^{-4} +20 q^{-6} -10 q^{-8} +18 q^{-10} -14 q^{-12} +12 q^{-14} -12 q^{-16} +2 q^{-18} -5 q^{-20} -2 q^{-22} +6 q^{-24} -10 q^{-26} +11 q^{-28} -12 q^{-30} +12 q^{-32} -10 q^{-34} +6 q^{-36} -4 q^{-38} +4 q^{-40} + q^{-44} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{40}+q^{34}+q^{32}+q^{26}-2 q^{22}-2 q^{16}-q^{14}+q^{12}-q^8-q^6+1+2 q^{-2} + q^{-4} + q^{-6} +2 q^{-8} +2 q^{-10} + q^{-12} +2 q^{-14} + q^{-16} + q^{-18} - q^{-20} -2 q^{-22} -2 q^{-24} -2 q^{-26} -2 q^{-28} -2 q^{-30} + q^{-34} + q^{-36} + q^{-40} + q^{-42} + q^{-44} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-q^{34}-q^{32}+2 q^{30}-q^{26}+2 q^{24}+q^{22}+q^{18}+q^{16}-q^{14}-q^6+q^2-1- q^{-2} +2 q^{-10} + q^{-14} -2 q^{-18} - q^{-20} + q^{-26} +2 q^{-28} + q^{-32} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{21}+q^{17}+q^{13}+q^9- q^{-3} - q^{-5} -2 q^{-7} - q^{-9} - q^{-11} + q^{-13} + q^{-15} +2 q^{-17} + q^{-19} + q^{-21} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-q^{34}+q^{32}-2 q^{30}+2 q^{28}-q^{26}+2 q^{24}-q^{22}+2 q^{20}-q^{18}+q^{16}+q^{14}+2 q^{10}-2 q^8+3 q^6-4 q^4+3 q^2-5+3 q^{-2} -4 q^{-4} +2 q^{-6} -2 q^{-8} - q^{-14} +2 q^{-16} -2 q^{-18} +3 q^{-20} -2 q^{-22} +2 q^{-24} - q^{-26} +2 q^{-28} + q^{-32} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{58}-q^{54}-q^{52}+2 q^{48}+q^{46}-q^{44}-q^{42}+2 q^{38}+q^{36}-q^{32}+q^{28}+q^{26}-q^{24}-q^{22}+2 q^{18}-q^{14}-q^{12}+q^8-q^4-q^2+1- q^{-2} - q^{-4} +2 q^{-8} + q^{-10} - q^{-12} - q^{-14} +2 q^{-16} +3 q^{-18} + q^{-20} -2 q^{-22} - q^{-24} + q^{-26} + q^{-28} - q^{-30} -3 q^{-32} - q^{-34} + q^{-36} + q^{-38} - q^{-40} - q^{-42} + q^{-44} +2 q^{-46} + q^{-54} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{86}-q^{84}+q^{82}-q^{80}-q^{74}+3 q^{72}-2 q^{70}+2 q^{68}-q^{66}+q^{62}-2 q^{60}+3 q^{58}-2 q^{56}+2 q^{48}-q^{46}+2 q^{44}-q^{42}+q^{40}+2 q^{38}-q^{36}+q^{34}+q^{32}+q^{30}+q^{26}-q^{24}+q^{22}-q^{20}-q^{14}-q^{10}+2 q^4-4 q^2+2-3 q^{-4} +4 q^{-6} -5 q^{-8} +2 q^{-10} - q^{-12} - q^{-14} +2 q^{-16} -3 q^{-18} +2 q^{-20} -2 q^{-22} - q^{-26} - q^{-28} +2 q^{-36} -2 q^{-38} + q^{-40} + q^{-42} -2 q^{-44} +5 q^{-46} -5 q^{-48} +3 q^{-50} + q^{-52} -2 q^{-54} +5 q^{-56} -4 q^{-58} +3 q^{-60} + q^{-66} -2 q^{-68} +2 q^{-70} + q^{-74} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 4"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
| V2 and V3: | (-5, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 4. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | χ | |||||||||
| 11 | 1 | 1 | |||||||||||||||||||
| 9 | 0 | ||||||||||||||||||||
| 7 | 2 | 1 | 1 | ||||||||||||||||||
| 5 | 1 | -1 | |||||||||||||||||||
| 3 | 2 | 2 | 0 | ||||||||||||||||||
| 1 | 2 | 1 | -1 | ||||||||||||||||||
| -1 | 2 | 2 | 0 | ||||||||||||||||||
| -3 | 2 | 3 | 1 | ||||||||||||||||||
| -5 | 1 | 1 | 0 | ||||||||||||||||||
| -7 | 1 | 2 | 1 | ||||||||||||||||||
| -9 | 1 | -1 | |||||||||||||||||||
| -11 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 4]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 4]] |
Out[3]= | PD[X[6, 2, 7, 1], X[16, 12, 17, 11], X[12, 3, 13, 4], X[2, 15, 3, 16],X[14, 5, 15, 6], X[20, 8, 1, 7], X[18, 10, 19, 9], X[4, 13, 5, 14],X[10, 18, 11, 17], X[8, 20, 9, 19]] |
In[4]:= | GaussCode[Knot[10, 4]] |
Out[4]= | GaussCode[1, -4, 3, -8, 5, -1, 6, -10, 7, -9, 2, -3, 8, -5, 4, -2, 9, -7, 10, -6] |
In[5]:= | BR[Knot[10, 4]] |
Out[5]= | BR[5, {-1, -1, -1, 2, -1, 2, 3, -2, 3, 4, -3, 4}] |
In[6]:= | alex = Alexander[Knot[10, 4]][t] |
Out[6]= | 3 7 2 |
In[7]:= | Conway[Knot[10, 4]][z] |
Out[7]= | 2 4 1 - 5 z - 3 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 4]} |
In[9]:= | {KnotDet[Knot[10, 4]], KnotSignature[Knot[10, 4]]} |
Out[9]= | {27, -2} |
In[10]:= | J=Jones[Knot[10, 4]][q] |
Out[10]= | -5 2 3 3 4 2 3 4 5 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 4]} |
In[12]:= | A2Invariant[Knot[10, 4]][q] |
Out[12]= | -16 -10 -6 2 4 6 8 10 12 14 16 q + q + q - q - q - q - q + q + q + q + q |
In[13]:= | Kauffman[Knot[10, 4]][a, z] |
Out[13]= | 2 2 |
In[14]:= | {Vassiliev[2][Knot[10, 4]], Vassiliev[3][Knot[10, 4]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[10, 4]][q, t] |
Out[15]= | 3 2 1 1 1 2 1 1 2 2 t |


