10 135
|
|
|
|
Visit 10 135's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 135's page at Knotilus! Visit 10 135's page at the original Knot Atlas! |
10 135 Quick Notes |
10 135 Further Notes and Views
Knot presentations
| Planar diagram presentation | X1425 X3849 X9,15,10,14 X12,5,13,6 X6,13,7,14 X11,19,12,18 X15,1,16,20 X19,17,20,16 X17,11,18,10 X7283 |
| Gauss code | -1, 10, -2, 1, 4, -5, -10, 2, -3, 9, -6, -4, 5, 3, -7, 8, -9, 6, -8, 7 |
| Dowker-Thistlethwaite code | 4 8 -12 2 14 18 -6 20 10 16 |
| Conway Notation | [221,21,2-] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 t^2-9 t+13-9 t^{-1} +3 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 z^4+3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 37, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^3+4 q^2-5 q+7-6 q^{-1} +6 q^{-2} -4 q^{-3} +2 q^{-4} - q^{-5} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^4-a^4+z^4 a^2+z^2 a^2+2 z^4+5 z^2+4-2 z^2 a^{-2} -2 a^{-2} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^8+z^8+2 a^3 z^7+4 a z^7+2 z^7 a^{-1} +2 a^4 z^6+a^2 z^6+z^6 a^{-2} +a^5 z^5-3 a^3 z^5-8 a z^5-4 z^5 a^{-1} -5 a^4 z^4-4 a^2 z^4+2 z^4 a^{-2} +3 z^4-3 a^5 z^3-a^3 z^3+8 a z^3+9 z^3 a^{-1} +3 z^3 a^{-3} +3 a^4 z^2+a^2 z^2-4 z^2 a^{-2} -6 z^2+2 a^5 z+a^3 z-4 a z-6 z a^{-1} -3 z a^{-3} -a^4+2 a^{-2} +4} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}-2 q^{10}+q^8+q^4+3 q^2+1+3 q^{-2} - q^{-4} -2 q^{-10} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-q^{78}+3 q^{76}-4 q^{74}+3 q^{72}-2 q^{70}-3 q^{68}+9 q^{66}-15 q^{64}+17 q^{62}-15 q^{60}+3 q^{58}+9 q^{56}-25 q^{54}+35 q^{52}-32 q^{50}+17 q^{48}+3 q^{46}-25 q^{44}+35 q^{42}-31 q^{40}+14 q^{38}+7 q^{36}-24 q^{34}+26 q^{32}-14 q^{30}-9 q^{28}+30 q^{26}-37 q^{24}+31 q^{22}-10 q^{20}-18 q^{18}+42 q^{16}-50 q^{14}+46 q^{12}-24 q^{10}-q^8+30 q^6-41 q^4+45 q^2-27+8 q^{-2} +18 q^{-4} -27 q^{-6} +25 q^{-8} -6 q^{-10} -12 q^{-12} +30 q^{-14} -29 q^{-16} +14 q^{-18} +7 q^{-20} -29 q^{-22} +39 q^{-24} -37 q^{-26} +19 q^{-28} -20 q^{-32} +26 q^{-34} -26 q^{-36} +16 q^{-38} -5 q^{-40} -4 q^{-42} +5 q^{-44} -9 q^{-46} +6 q^{-48} -2 q^{-50} + q^{-52} + q^{-54} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+q^9-2 q^7+2 q^5+q+2 q^{-1} - q^{-3} +2 q^{-5} -2 q^{-7} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-q^{30}-q^{28}+4 q^{26}-2 q^{24}-6 q^{22}+7 q^{20}+q^{18}-11 q^{16}+5 q^{14}+6 q^{12}-8 q^{10}+q^8+7 q^6-q^4-3 q^2+3+7 q^{-2} -7 q^{-4} -2 q^{-6} +11 q^{-8} -6 q^{-10} -6 q^{-12} +8 q^{-14} -2 q^{-16} -5 q^{-18} +2 q^{-20} + q^{-22} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{63}+q^{61}+q^{59}-q^{57}-3 q^{55}+2 q^{53}+7 q^{51}-q^{49}-12 q^{47}-3 q^{45}+17 q^{43}+13 q^{41}-19 q^{39}-24 q^{37}+15 q^{35}+34 q^{33}-5 q^{31}-45 q^{29}-7 q^{27}+41 q^{25}+19 q^{23}-38 q^{21}-26 q^{19}+29 q^{17}+30 q^{15}-19 q^{13}-26 q^{11}+8 q^9+27 q^7+4 q^5-21 q^3-14 q+18 q^{-1} +28 q^{-3} -12 q^{-5} -36 q^{-7} +4 q^{-9} +46 q^{-11} +4 q^{-13} -44 q^{-15} -17 q^{-17} +38 q^{-19} +22 q^{-21} -27 q^{-23} -26 q^{-25} +15 q^{-27} +19 q^{-29} -3 q^{-31} -14 q^{-33} -2 q^{-35} +8 q^{-37} +2 q^{-39} -2 q^{-43} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}-2 q^{10}+q^8+q^4+3 q^2+1+3 q^{-2} - q^{-4} -2 q^{-10} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{44}-2 q^{42}+6 q^{40}-12 q^{38}+23 q^{36}-38 q^{34}+58 q^{32}-80 q^{30}+100 q^{28}-116 q^{26}+114 q^{24}-102 q^{22}+64 q^{20}-20 q^{18}-44 q^{16}+104 q^{14}-158 q^{12}+202 q^{10}-220 q^8+228 q^6-199 q^4+170 q^2-108+54 q^{-2} +12 q^{-4} -64 q^{-6} +102 q^{-8} -124 q^{-10} +123 q^{-12} -112 q^{-14} +86 q^{-16} -64 q^{-18} +36 q^{-20} -20 q^{-22} +8 q^{-24} -2 q^{-26} +2 q^{-30} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-q^{38}+3 q^{34}+2 q^{32}-3 q^{30}-3 q^{28}+2 q^{26}-7 q^{22}-5 q^{20}+2 q^{18}+2 q^{16}-4 q^{14}+5 q^{10}+q^8+2 q^6+6 q^4+4 q^2+3+5 q^{-2} +4 q^{-4} -5 q^{-6} -3 q^{-8} +3 q^{-10} -8 q^{-14} -2 q^{-16} +3 q^{-18} - q^{-20} -3 q^{-22} - q^{-24} +3 q^{-26} + q^{-28} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{34}-q^{32}+q^{30}+2 q^{28}-4 q^{26}+q^{24}+2 q^{22}-9 q^{20}+2 q^{18}+3 q^{16}-9 q^{14}+2 q^{12}+3 q^{10}-3 q^8+q^6+6 q^4+7 q^2+5+3 q^{-2} +9 q^{-4} -3 q^{-6} -8 q^{-8} +4 q^{-10} -6 q^{-12} -8 q^{-14} +5 q^{-16} - q^{-18} -2 q^{-20} +3 q^{-22} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{21}-q^{17}-2 q^{13}+q^{11}-q^9+q^7+q^5+3 q^3+3 q+2 q^{-1} +3 q^{-3} - q^{-5} -2 q^{-9} -2 q^{-13} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{44}+2 q^{38}+2 q^{36}-2 q^{34}-2 q^{32}+2 q^{30}-q^{28}-8 q^{26}-3 q^{24}+4 q^{22}-5 q^{20}-10 q^{18}+q^{14}-7 q^{12}-2 q^{10}+9 q^8+8 q^6+6 q^4+18 q^2+17+5 q^{-2} +5 q^{-4} +8 q^{-6} -8 q^{-8} -14 q^{-10} -6 q^{-12} -4 q^{-14} -10 q^{-16} -6 q^{-18} +4 q^{-20} +3 q^{-22} - q^{-24} + q^{-26} +3 q^{-28} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{26}-q^{22}-q^{20}-2 q^{16}+q^{14}-q^{12}+q^8+q^6+3 q^4+3 q^2+4+2 q^{-2} +3 q^{-4} - q^{-6} -2 q^{-10} -2 q^{-12} -2 q^{-16} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{34}+q^{32}-3 q^{30}+4 q^{28}-6 q^{26}+7 q^{24}-8 q^{22}+7 q^{20}-6 q^{18}+3 q^{16}+q^{14}-4 q^{12}+9 q^{10}-11 q^8+15 q^6-14 q^4+15 q^2-11+9 q^{-2} -3 q^{-4} + q^{-6} +4 q^{-8} -6 q^{-10} +8 q^{-12} -8 q^{-14} +7 q^{-16} -7 q^{-18} +4 q^{-20} -3 q^{-22} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-q^{52}-q^{50}+2 q^{48}+3 q^{46}-q^{44}-5 q^{42}-2 q^{40}+5 q^{38}+5 q^{36}-5 q^{34}-9 q^{32}-q^{30}+8 q^{28}+3 q^{26}-8 q^{24}-6 q^{22}+3 q^{20}+6 q^{18}-2 q^{16}-5 q^{14}+q^{12}+7 q^{10}+2 q^8-3 q^6+8 q^2+7- q^{-2} -4 q^{-4} +5 q^{-6} +7 q^{-8} - q^{-10} -9 q^{-12} -3 q^{-14} +6 q^{-16} +4 q^{-18} -7 q^{-20} -9 q^{-22} +6 q^{-26} +2 q^{-28} -4 q^{-30} -3 q^{-32} + q^{-34} +3 q^{-36} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}-q^{44}+2 q^{42}-2 q^{40}+4 q^{38}-5 q^{36}+4 q^{34}-7 q^{32}+5 q^{30}-8 q^{28}+3 q^{26}-5 q^{24}+2 q^{22}-q^{20}-4 q^{18}+4 q^{16}-6 q^{14}+8 q^{12}-11 q^{10}+12 q^8-7 q^6+17 q^4-4 q^2+15- q^{-2} +11 q^{-4} + q^{-6} - q^{-8} -2 q^{-10} -7 q^{-12} +2 q^{-14} -10 q^{-16} +2 q^{-18} -9 q^{-20} +6 q^{-22} -4 q^{-24} +4 q^{-26} -3 q^{-28} +3 q^{-30} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-q^{78}+3 q^{76}-4 q^{74}+3 q^{72}-2 q^{70}-3 q^{68}+9 q^{66}-15 q^{64}+17 q^{62}-15 q^{60}+3 q^{58}+9 q^{56}-25 q^{54}+35 q^{52}-32 q^{50}+17 q^{48}+3 q^{46}-25 q^{44}+35 q^{42}-31 q^{40}+14 q^{38}+7 q^{36}-24 q^{34}+26 q^{32}-14 q^{30}-9 q^{28}+30 q^{26}-37 q^{24}+31 q^{22}-10 q^{20}-18 q^{18}+42 q^{16}-50 q^{14}+46 q^{12}-24 q^{10}-q^8+30 q^6-41 q^4+45 q^2-27+8 q^{-2} +18 q^{-4} -27 q^{-6} +25 q^{-8} -6 q^{-10} -12 q^{-12} +30 q^{-14} -29 q^{-16} +14 q^{-18} +7 q^{-20} -29 q^{-22} +39 q^{-24} -37 q^{-26} +19 q^{-28} -20 q^{-32} +26 q^{-34} -26 q^{-36} +16 q^{-38} -5 q^{-40} -4 q^{-42} +5 q^{-44} -9 q^{-46} +6 q^{-48} -2 q^{-50} + q^{-52} + q^{-54} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 135"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 t^2-9 t+13-9 t^{-1} +3 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 z^4+3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 37, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^3+4 q^2-5 q+7-6 q^{-1} +6 q^{-2} -4 q^{-3} +2 q^{-4} - q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^4-a^4+z^4 a^2+z^2 a^2+2 z^4+5 z^2+4-2 z^2 a^{-2} -2 a^{-2} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^8+z^8+2 a^3 z^7+4 a z^7+2 z^7 a^{-1} +2 a^4 z^6+a^2 z^6+z^6 a^{-2} +a^5 z^5-3 a^3 z^5-8 a z^5-4 z^5 a^{-1} -5 a^4 z^4-4 a^2 z^4+2 z^4 a^{-2} +3 z^4-3 a^5 z^3-a^3 z^3+8 a z^3+9 z^3 a^{-1} +3 z^3 a^{-3} +3 a^4 z^2+a^2 z^2-4 z^2 a^{-2} -6 z^2+2 a^5 z+a^3 z-4 a z-6 z a^{-1} -3 z a^{-3} -a^4+2 a^{-2} +4} |
Vassiliev invariants
| V2 and V3: | (3, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 135. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | χ | |||||||||
| 7 | 2 | -2 | |||||||||||||||||
| 5 | 2 | 2 | |||||||||||||||||
| 3 | 3 | 2 | -1 | ||||||||||||||||
| 1 | 4 | 2 | 2 | ||||||||||||||||
| -1 | 3 | 4 | 1 | ||||||||||||||||
| -3 | 3 | 3 | 0 | ||||||||||||||||
| -5 | 1 | 3 | 2 | ||||||||||||||||
| -7 | 1 | 3 | -2 | ||||||||||||||||
| -9 | 1 | 1 | |||||||||||||||||
| -11 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 135]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 135]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 15, 10, 14], X[12, 5, 13, 6],X[6, 13, 7, 14], X[11, 19, 12, 18], X[15, 1, 16, 20],X[19, 17, 20, 16], X[17, 11, 18, 10], X[7, 2, 8, 3]] |
In[4]:= | GaussCode[Knot[10, 135]] |
Out[4]= | GaussCode[-1, 10, -2, 1, 4, -5, -10, 2, -3, 9, -6, -4, 5, 3, -7, 8, -9, 6, -8, 7] |
In[5]:= | BR[Knot[10, 135]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, 2, -3, -2, -2, -2, -3}] |
In[6]:= | alex = Alexander[Knot[10, 135]][t] |
Out[6]= | 3 9 2 |
In[7]:= | Conway[Knot[10, 135]][z] |
Out[7]= | 2 4 1 + 3 z + 3 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 34], Knot[10, 135]} |
In[9]:= | {KnotDet[Knot[10, 135]], KnotSignature[Knot[10, 135]]} |
Out[9]= | {37, 0} |
In[10]:= | J=Jones[Knot[10, 135]][q] |
Out[10]= | -5 2 4 6 6 2 3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 135]} |
In[12]:= | A2Invariant[Knot[10, 135]][q] |
Out[12]= | -16 2 -8 -4 3 2 4 10 |
In[13]:= | Kauffman[Knot[10, 135]][a, z] |
Out[13]= | 22 4 3 z 6 z 3 5 2 4 z 2 2 |
In[14]:= | {Vassiliev[2][Knot[10, 135]], Vassiliev[3][Knot[10, 135]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[10, 135]][q, t] |
Out[15]= | 4 1 1 1 3 1 3 3 |


