9 44

From Knot Atlas
Revision as of 20:50, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 43.gif

9_43

9 45.gif

9_45

9 44.gif Visit 9 44's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 44's page at Knotilus!

Visit 9 44's page at the original Knot Atlas!

9 44 Quick Notes


9 44 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13
Gauss code -1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6
Dowker-Thistlethwaite code 4 8 10 -14 2 -16 -6 -18 -12
Conway Notation [22,21,2-]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index [math]\displaystyle{ \{4,5\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-3]
Hyperbolic Volume 7.40677
A-Polynomial See Data:9 44/A-polynomial

[edit Notes for 9 44's three dimensional invariants] 9_44 has girth 4. See arXiv:math.GT/0508590 and a forthcoming paper by the same authors.

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 0

[edit Notes for 9 44's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^2-4 t+7-4 t^{-1} + t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ z^4+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 17, 0 }
Jones polynomial [math]\displaystyle{ q^2-2 q+3-3 q^{-1} +3 q^{-2} -2 q^{-3} +2 q^{-4} - q^{-5} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^4-a^4+z^4 a^2+3 z^2 a^2+3 a^2-2 z^2-2+ a^{-2} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a^3 z^7+a z^7+2 a^4 z^6+3 a^2 z^6+z^6+a^5 z^5-2 a^3 z^5-3 a z^5-7 a^4 z^4-10 a^2 z^4-3 z^4-3 a^5 z^3-a^3 z^3+4 a z^3+2 z^3 a^{-1} +5 a^4 z^2+10 a^2 z^2+z^2 a^{-2} +6 z^2+a^5 z+a^3 z-a z-z a^{-1} -a^4-3 a^2- a^{-2} -2 }[/math]
The A2 invariant [math]\displaystyle{ -q^{16}+2 q^8+q^6+q^4-1- q^{-4} + q^{-6} + q^{-8} }[/math]
The G2 invariant [math]\displaystyle{ q^{80}-q^{78}+2 q^{76}-3 q^{74}+q^{72}-4 q^{68}+6 q^{66}-5 q^{64}+3 q^{62}-q^{60}-4 q^{58}+5 q^{56}-4 q^{54}+2 q^{50}-4 q^{48}+4 q^{46}-4 q^{42}+7 q^{40}-5 q^{38}+3 q^{36}-2 q^{32}+6 q^{30}-4 q^{28}+6 q^{26}-2 q^{24}+2 q^{22}+4 q^{20}-4 q^{18}+4 q^{16}-2 q^{14}+q^{12}+3 q^{10}-4 q^8+2 q^6-4 q^2+5-6 q^{-2} +2 q^{-6} -6 q^{-8} +5 q^{-10} -3 q^{-12} + q^{-14} + q^{-16} -3 q^{-18} +2 q^{-20} + q^{-24} + q^{-26} + q^{-32} + q^{-38} }[/math]

Vassiliev invariants

V2 and V3: (0, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ \frac{16}{3} }[/math] [math]\displaystyle{ \frac{64}{3} }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 48 }[/math] [math]\displaystyle{ -\frac{56}{3} }[/math] [math]\displaystyle{ \frac{104}{3} }[/math] [math]\displaystyle{ -\frac{16}{3} }[/math] [math]\displaystyle{ 0 }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 9 44. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-5-4-3-2-1012χ
5       11
3      1 -1
1     21 1
-1    22  0
-3   11   0
-5  12    1
-7 11     0
-9 1      1
-111       -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 44]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 44]]
Out[3]=  
PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], 
 X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12], 

X[12, 17, 13, 18], X[6, 14, 7, 13]]
In[4]:=
GaussCode[Knot[9, 44]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6]
In[5]:=
BR[Knot[9, 44]]
Out[5]=  
BR[4, {-1, -1, -1, -2, 1, 1, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[9, 44]][t]
Out[6]=  
     -2   4          2

7 + t - - - 4 t + t

t
In[7]:=
Conway[Knot[9, 44]][z]
Out[7]=  
     4
1 + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 44]}
In[9]:=
{KnotDet[Knot[9, 44]], KnotSignature[Knot[9, 44]]}
Out[9]=  
{17, 0}
In[10]:=
J=Jones[Knot[9, 44]][q]
Out[10]=  
     -5   2    2    3    3          2

3 - q + -- - -- + -- - - - 2 q + q

          4    3    2   q
q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 44]}
In[12]:=
A2Invariant[Knot[9, 44]][q]
Out[12]=  
      -16   2     -6    -4    4    6    8

-1 - q + -- + q + q - q + q + q

            8
q
In[13]:=
Kauffman[Knot[9, 44]][a, z]
Out[13]=  
                                                       2
     -2      2    4   z          3      5        2   z        2  2

-2 - a - 3 a - a - - - a z + a z + a z + 6 z + -- + 10 a z +

                      a                               2
                                                     a

              3
    4  2   2 z         3    3  3      5  3      4       2  4
 5 a  z  + ---- + 4 a z  - a  z  - 3 a  z  - 3 z  - 10 a  z  - 
            a

    4  4        5      3  5    5  5    6      2  6      4  6      7
 7 a  z  - 3 a z  - 2 a  z  + a  z  + z  + 3 a  z  + 2 a  z  + a z  + 

  3  7
a z
In[14]:=
{Vassiliev[2][Knot[9, 44]], Vassiliev[3][Knot[9, 44]]}
Out[14]=  
{0, -1}
In[15]:=
Kh[Knot[9, 44]][q, t]
Out[15]=  
2           1        1       1       1       1       2       1

- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2

         q   t    q  t    q  t    q  t    q  t    q  t    q  t

  1      2           3      5  2
 ---- + --- + q t + q  t + q  t
  3     q t
q t