K11a111

From Knot Atlas
Revision as of 02:02, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a110.gif

K11a110

K11a112.gif

K11a112

K11a111.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a111 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X14,5,15,6 X16,8,17,7 X2,10,3,9 X22,11,1,12 X20,13,21,14 X18,16,19,15 X8,18,9,17 X6,19,7,20 X12,21,13,22
Gauss code 1, -5, 2, -1, 3, -10, 4, -9, 5, -2, 6, -11, 7, -3, 8, -4, 9, -8, 10, -7, 11, -6
Dowker-Thistlethwaite code 4 10 14 16 2 22 20 18 8 6 12
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a111 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11a111's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^3-10 t^2+24 t-31+24 t^{-1} -10 t^{-2} +2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^6+2 z^4+2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 103, 2 }
Jones polynomial [math]\displaystyle{ q^7-4 q^6+7 q^5-11 q^4+15 q^3-16 q^2+16 q-13+10 q^{-1} -6 q^{-2} +3 q^{-3} - q^{-4} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-2} +z^6-a^2 z^4+2 z^4 a^{-2} -2 z^4 a^{-4} +3 z^4-2 a^2 z^2+2 z^2 a^{-2} -3 z^2 a^{-4} +z^2 a^{-6} +4 z^2-a^2+ a^{-2} - a^{-4} +2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-2} +z^{10}+3 a z^9+7 z^9 a^{-1} +4 z^9 a^{-3} +3 a^2 z^8+11 z^8 a^{-2} +7 z^8 a^{-4} +7 z^8+a^3 z^7-7 a z^7-13 z^7 a^{-1} +3 z^7 a^{-3} +8 z^7 a^{-5} -12 a^2 z^6-33 z^6 a^{-2} -5 z^6 a^{-4} +7 z^6 a^{-6} -33 z^6-4 a^3 z^5-3 a z^5-7 z^5 a^{-1} -19 z^5 a^{-3} -7 z^5 a^{-5} +4 z^5 a^{-7} +15 a^2 z^4+24 z^4 a^{-2} -6 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +37 z^4+5 a^3 z^3+12 a z^3+17 z^3 a^{-1} +12 z^3 a^{-3} -z^3 a^{-5} -3 z^3 a^{-7} -7 a^2 z^2-4 z^2 a^{-2} +5 z^2 a^{-4} +2 z^2 a^{-6} -14 z^2-2 a^3 z-5 a z-5 z a^{-1} -z a^{-3} +z a^{-5} +a^2- a^{-2} - a^{-4} +2 }[/math]
The A2 invariant Data:K11a111/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a111/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_117, K11a23,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a68,}

Vassiliev invariants

V2 and V3: (2, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{124}{3} }[/math] [math]\displaystyle{ -\frac{4}{3} }[/math] [math]\displaystyle{ 64 }[/math] [math]\displaystyle{ \frac{368}{3} }[/math] [math]\displaystyle{ \frac{128}{3} }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{992}{3} }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ \frac{6751}{15} }[/math] [math]\displaystyle{ \frac{796}{15} }[/math] [math]\displaystyle{ \frac{4804}{45} }[/math] [math]\displaystyle{ -\frac{31}{9} }[/math] [math]\displaystyle{ \frac{271}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a111. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         41 3
9        73  -4
7       84   4
5      87    -1
3     88     0
1    69      3
-1   47       -3
-3  26        4
-5 14         -3
-7 2          2
-91           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a110.gif

K11a110

K11a112.gif

K11a112