K11a112
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X14,6,15,5 X16,8,17,7 X18,9,19,10 X2,11,3,12 X20,13,21,14 X6,16,7,15 X22,18,1,17 X12,19,13,20 X8,21,9,22 |
| Gauss code | 1, -6, 2, -1, 3, -8, 4, -11, 5, -2, 6, -10, 7, -3, 8, -4, 9, -5, 10, -7, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 14 16 18 2 20 6 22 12 8 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-6 t^3+15 t^2-25 t+31-25 t^{-1} +15 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+2 z^6-z^4-3 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 125, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^5+4 q^4-8 q^3+14 q^2-18 q+20-20 q^{-1} +17 q^{-2} -12 q^{-3} +7 q^{-4} -3 q^{-5} + q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +5 z^6+a^4 z^4-8 a^2 z^4-3 z^4 a^{-2} +9 z^4+3 a^4 z^2-10 a^2 z^2-2 z^2 a^{-2} +6 z^2+2 a^4-3 a^2+ a^{-2} +1 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 a^2 z^{10}+2 z^{10}+5 a^3 z^9+11 a z^9+6 z^9 a^{-1} +5 a^4 z^8+7 a^2 z^8+8 z^8 a^{-2} +10 z^8+3 a^5 z^7-10 a^3 z^7-24 a z^7-4 z^7 a^{-1} +7 z^7 a^{-3} +a^6 z^6-13 a^4 z^6-30 a^2 z^6-10 z^6 a^{-2} +4 z^6 a^{-4} -30 z^6-8 a^5 z^5+6 a^3 z^5+19 a z^5-6 z^5 a^{-1} -10 z^5 a^{-3} +z^5 a^{-5} -3 a^6 z^4+12 a^4 z^4+39 a^2 z^4-6 z^4 a^{-4} +30 z^4+5 a^5 z^3-2 a^3 z^3-3 a z^3+8 z^3 a^{-1} +3 z^3 a^{-3} -z^3 a^{-5} +2 a^6 z^2-8 a^4 z^2-21 a^2 z^2+3 z^2 a^{-2} +2 z^2 a^{-4} -10 z^2-a^5 z-a z-3 z a^{-1} -z a^{-3} +2 a^4+3 a^2- a^{-2} +1 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{18}+2 q^{12}-3 q^{10}+3 q^8-q^6-2 q^4+2 q^2-5+4 q^{-2} -2 q^{-4} +2 q^{-6} +3 q^{-8} -2 q^{-10} +2 q^{-12} - q^{-14} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{94}-2 q^{92}+5 q^{90}-9 q^{88}+11 q^{86}-12 q^{84}+5 q^{82}+11 q^{80}-32 q^{78}+59 q^{76}-80 q^{74}+82 q^{72}-56 q^{70}-11 q^{68}+115 q^{66}-222 q^{64}+297 q^{62}-283 q^{60}+156 q^{58}+70 q^{56}-331 q^{54}+533 q^{52}-570 q^{50}+403 q^{48}-73 q^{46}-309 q^{44}+581 q^{42}-627 q^{40}+434 q^{38}-68 q^{36}-299 q^{34}+502 q^{32}-461 q^{30}+179 q^{28}+200 q^{26}-506 q^{24}+596 q^{22}-418 q^{20}+36 q^{18}+410 q^{16}-746 q^{14}+838 q^{12}-646 q^{10}+216 q^8+289 q^6-705 q^4+874 q^2-737+363 q^{-2} +107 q^{-4} -487 q^{-6} +626 q^{-8} -488 q^{-10} +146 q^{-12} +231 q^{-14} -463 q^{-16} +455 q^{-18} -206 q^{-20} -151 q^{-22} +463 q^{-24} -584 q^{-26} +485 q^{-28} -208 q^{-30} -138 q^{-32} +410 q^{-34} -527 q^{-36} +476 q^{-38} -288 q^{-40} +60 q^{-42} +137 q^{-44} -258 q^{-46} +281 q^{-48} -233 q^{-50} +141 q^{-52} -39 q^{-54} -40 q^{-56} +83 q^{-58} -94 q^{-60} +78 q^{-62} -47 q^{-64} +20 q^{-66} +3 q^{-68} -14 q^{-70} +15 q^{-72} -13 q^{-74} +7 q^{-76} -3 q^{-78} + q^{-80} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a112"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-6 t^3+15 t^2-25 t+31-25 t^{-1} +15 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+2 z^6-z^4-3 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 125, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^5+4 q^4-8 q^3+14 q^2-18 q+20-20 q^{-1} +17 q^{-2} -12 q^{-3} +7 q^{-4} -3 q^{-5} + q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +5 z^6+a^4 z^4-8 a^2 z^4-3 z^4 a^{-2} +9 z^4+3 a^4 z^2-10 a^2 z^2-2 z^2 a^{-2} +6 z^2+2 a^4-3 a^2+ a^{-2} +1 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 a^2 z^{10}+2 z^{10}+5 a^3 z^9+11 a z^9+6 z^9 a^{-1} +5 a^4 z^8+7 a^2 z^8+8 z^8 a^{-2} +10 z^8+3 a^5 z^7-10 a^3 z^7-24 a z^7-4 z^7 a^{-1} +7 z^7 a^{-3} +a^6 z^6-13 a^4 z^6-30 a^2 z^6-10 z^6 a^{-2} +4 z^6 a^{-4} -30 z^6-8 a^5 z^5+6 a^3 z^5+19 a z^5-6 z^5 a^{-1} -10 z^5 a^{-3} +z^5 a^{-5} -3 a^6 z^4+12 a^4 z^4+39 a^2 z^4-6 z^4 a^{-4} +30 z^4+5 a^5 z^3-2 a^3 z^3-3 a z^3+8 z^3 a^{-1} +3 z^3 a^{-3} -z^3 a^{-5} +2 a^6 z^2-8 a^4 z^2-21 a^2 z^2+3 z^2 a^{-2} +2 z^2 a^{-4} -10 z^2-a^5 z-a z-3 z a^{-1} -z a^{-3} +2 a^4+3 a^2- a^{-2} +1 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a5,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a112"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-6 t^3+15 t^2-25 t+31-25 t^{-1} +15 t^{-2} -6 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ -q^5+4 q^4-8 q^3+14 q^2-18 q+20-20 q^{-1} +17 q^{-2} -12 q^{-3} +7 q^{-4} -3 q^{-5} + q^{-6} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a5,} |
Vassiliev invariants
| V2 and V3: | (-3, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a112. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



