K11a113
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X14,6,15,5 X16,7,17,8 X18,9,19,10 X2,11,3,12 X20,13,21,14 X22,16,1,15 X8,17,9,18 X12,19,13,20 X6,21,7,22 |
| Gauss code | 1, -6, 2, -1, 3, -11, 4, -9, 5, -2, 6, -10, 7, -3, 8, -4, 9, -5, 10, -7, 11, -8 |
| Dowker-Thistlethwaite code | 4 10 14 16 18 2 20 22 8 12 6 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-6 t^3+15 t^2-21 t+23-21 t^{-1} +15 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+2 z^6-z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 109, -4 } |
| Jones polynomial | [math]\displaystyle{ -q+4-7 q^{-1} +12 q^{-2} -15 q^{-3} +17 q^{-4} -17 q^{-5} +15 q^{-6} -11 q^{-7} +6 q^{-8} -3 q^{-9} + q^{-10} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^4 a^8+3 z^2 a^8+a^8-2 z^6 a^6-8 z^4 a^6-9 z^2 a^6-3 a^6+z^8 a^4+5 z^6 a^4+9 z^4 a^4+8 z^2 a^4+2 a^4-z^6 a^2-3 z^4 a^2-z^2 a^2+a^2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^4 a^{12}-z^2 a^{12}+3 z^5 a^{11}-3 z^3 a^{11}+z a^{11}+5 z^6 a^{10}-4 z^4 a^{10}+z^2 a^{10}+7 z^7 a^9-8 z^5 a^9+3 z^3 a^9+z a^9+8 z^8 a^8-14 z^6 a^8+11 z^4 a^8-4 z^2 a^8+a^8+6 z^9 a^7-8 z^7 a^7-2 z^5 a^7+4 z^3 a^7-z a^7+2 z^{10} a^6+9 z^8 a^6-40 z^6 a^6+43 z^4 a^6-19 z^2 a^6+3 a^6+11 z^9 a^5-32 z^7 a^5+24 z^5 a^5-6 z^3 a^5+2 z^{10} a^4+5 z^8 a^4-36 z^6 a^4+43 z^4 a^4-17 z^2 a^4+2 a^4+5 z^9 a^3-16 z^7 a^3+12 z^5 a^3-2 z^3 a^3+z a^3+4 z^8 a^2-15 z^6 a^2+16 z^4 a^2-4 z^2 a^2-a^2+z^7 a-3 z^5 a+2 z^3 a }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{30}-q^{26}+q^{24}-3 q^{22}+2 q^{20}-q^{18}-q^{16}+2 q^{14}-4 q^{12}+4 q^{10}-q^8+2 q^6+2 q^4-q^2+2- q^{-2} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{162}-2 q^{160}+4 q^{158}-6 q^{156}+5 q^{154}-4 q^{152}-2 q^{150}+10 q^{148}-18 q^{146}+26 q^{144}-29 q^{142}+24 q^{140}-9 q^{138}-12 q^{136}+39 q^{134}-62 q^{132}+75 q^{130}-75 q^{128}+50 q^{126}-10 q^{124}-37 q^{122}+93 q^{120}-130 q^{118}+154 q^{116}-145 q^{114}+86 q^{112}+10 q^{110}-131 q^{108}+232 q^{106}-267 q^{104}+218 q^{102}-83 q^{100}-96 q^{98}+246 q^{96}-295 q^{94}+211 q^{92}-33 q^{90}-171 q^{88}+281 q^{86}-247 q^{84}+79 q^{82}+156 q^{80}-341 q^{78}+390 q^{76}-277 q^{74}+32 q^{72}+239 q^{70}-441 q^{68}+487 q^{66}-364 q^{64}+129 q^{62}+143 q^{60}-350 q^{58}+432 q^{56}-363 q^{54}+171 q^{52}+63 q^{50}-261 q^{48}+328 q^{46}-237 q^{44}+42 q^{42}+182 q^{40}-318 q^{38}+305 q^{36}-145 q^{34}-96 q^{32}+312 q^{30}-404 q^{28}+340 q^{26}-146 q^{24}-86 q^{22}+266 q^{20}-326 q^{18}+274 q^{16}-141 q^{14}-3 q^{12}+105 q^{10}-145 q^8+126 q^6-74 q^4+26 q^2+11-26 q^{-2} +23 q^{-4} -17 q^{-6} +8 q^{-8} -3 q^{-10} + q^{-12} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a113"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-6 t^3+15 t^2-21 t+23-21 t^{-1} +15 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+2 z^6-z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 109, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q+4-7 q^{-1} +12 q^{-2} -15 q^{-3} +17 q^{-4} -17 q^{-5} +15 q^{-6} -11 q^{-7} +6 q^{-8} -3 q^{-9} + q^{-10} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^4 a^8+3 z^2 a^8+a^8-2 z^6 a^6-8 z^4 a^6-9 z^2 a^6-3 a^6+z^8 a^4+5 z^6 a^4+9 z^4 a^4+8 z^2 a^4+2 a^4-z^6 a^2-3 z^4 a^2-z^2 a^2+a^2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^4 a^{12}-z^2 a^{12}+3 z^5 a^{11}-3 z^3 a^{11}+z a^{11}+5 z^6 a^{10}-4 z^4 a^{10}+z^2 a^{10}+7 z^7 a^9-8 z^5 a^9+3 z^3 a^9+z a^9+8 z^8 a^8-14 z^6 a^8+11 z^4 a^8-4 z^2 a^8+a^8+6 z^9 a^7-8 z^7 a^7-2 z^5 a^7+4 z^3 a^7-z a^7+2 z^{10} a^6+9 z^8 a^6-40 z^6 a^6+43 z^4 a^6-19 z^2 a^6+3 a^6+11 z^9 a^5-32 z^7 a^5+24 z^5 a^5-6 z^3 a^5+2 z^{10} a^4+5 z^8 a^4-36 z^6 a^4+43 z^4 a^4-17 z^2 a^4+2 a^4+5 z^9 a^3-16 z^7 a^3+12 z^5 a^3-2 z^3 a^3+z a^3+4 z^8 a^2-15 z^6 a^2+16 z^4 a^2-4 z^2 a^2-a^2+z^7 a-3 z^5 a+2 z^3 a }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a113"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-6 t^3+15 t^2-21 t+23-21 t^{-1} +15 t^{-2} -6 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ -q+4-7 q^{-1} +12 q^{-2} -15 q^{-3} +17 q^{-4} -17 q^{-5} +15 q^{-6} -11 q^{-7} +6 q^{-8} -3 q^{-9} + q^{-10} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11a113. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



