10 132
|
|
Visit 10 132's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 132's page at Knotilus! Visit 10 132's page at the original Knot Atlas! |
10 132 Quick Notes |
10 132 Further Notes and Views
Knot presentations
Planar diagram presentation | X4251 X8493 X5,12,6,13 X15,18,16,19 X9,16,10,17 X17,10,18,11 X13,20,14,1 X19,14,20,15 X11,6,12,7 X2837 |
Gauss code | 1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, 7 |
Dowker-Thistlethwaite code | 4 8 -12 2 -16 -6 -20 -18 -10 -14 |
Conway Notation | [23,3,2-] |
Three dimensional invariants
|
[edit Notes for 10 132's three dimensional invariants] 10 132 is a very interesting knot from the point of view of contact geometry. In particular, it is a transversely nonsimple knot, and it was the last knot with at most 10 crossings for which the maximal Thurston-Bennequin number was calculated. |
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 132"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (3, -5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 132. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | χ | |||||||||
-1 | 1 | 1 | 0 | |||||||||||||||
-3 | 1 | 1 | ||||||||||||||||
-5 | 1 | 2 | 1 | |||||||||||||||
-7 | 1 | 1 | ||||||||||||||||
-9 | 1 | 1 | 0 | |||||||||||||||
-11 | 1 | 1 | 0 | |||||||||||||||
-13 | 0 | |||||||||||||||||
-15 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 132]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 132]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[15, 18, 16, 19],X[9, 16, 10, 17], X[17, 10, 18, 11], X[13, 20, 14, 1],X[19, 14, 20, 15], X[11, 6, 12, 7], X[2, 8, 3, 7]] |
In[4]:= | GaussCode[Knot[10, 132]] |
Out[4]= | GaussCode[1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, 7] |
In[5]:= | BR[Knot[10, 132]] |
Out[5]= | BR[4, {1, 1, 1, -2, -1, -1, -2, -3, 2, -3, -3}] |
In[6]:= | alex = Alexander[Knot[10, 132]][t] |
Out[6]= | -2 1 2 |
In[7]:= | Conway[Knot[10, 132]][z] |
Out[7]= | 2 4 1 + 3 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[5, 1], Knot[10, 132]} |
In[9]:= | {KnotDet[Knot[10, 132]], KnotSignature[Knot[10, 132]]} |
Out[9]= | {5, 0} |
In[10]:= | J=Jones[Knot[10, 132]][q] |
Out[10]= | -7 -6 -5 -4 -2 -q + q - q + q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[5, 1], Knot[10, 132]} |
In[12]:= | A2Invariant[Knot[10, 132]][q] |
Out[12]= | -22 -20 -18 -14 -12 2 -8 -6 |
In[13]:= | Kauffman[Knot[10, 132]][a, z] |
Out[13]= | 4 6 3 5 7 2 2 4 2 |
In[14]:= | {Vassiliev[2][Knot[10, 132]], Vassiliev[3][Knot[10, 132]]} |
Out[14]= | {0, -5} |
In[15]:= | Kh[Knot[10, 132]][q, t] |
Out[15]= | -3 1 1 1 1 1 1 1 1 |