9 2

From Knot Atlas
Revision as of 20:51, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 1.gif

9_1

9 3.gif

9_3

9 2.gif Visit 9 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 2's page at Knotilus!

Visit 9 2's page at the original Knot Atlas!

9 2 Quick Notes


9 2 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X5,18,6,1 X7,16,8,17 X9,14,10,15 X13,10,14,11 X15,8,16,9 X17,6,18,7 X11,2,12,3
Gauss code -1, 9, -2, 1, -3, 8, -4, 7, -5, 6, -9, 2, -6, 5, -7, 4, -8, 3
Dowker-Thistlethwaite code 4 12 18 16 14 2 10 8 6
Conway Notation [72]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-12][1]
Hyperbolic Volume 3.48666
A-Polynomial See Data:9 2/A-polynomial

[edit Notes for 9 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 15, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (4, -10)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-1         11
-3        110
-5       1  1
-7      11  0
-9     11   0
-11    11    0
-13   11     0
-15   1      1
-17 11       0
-19          0
-211         -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 2]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 2]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 18, 6, 1], X[7, 16, 8, 17], 
 X[9, 14, 10, 15], X[13, 10, 14, 11], X[15, 8, 16, 9], 

X[17, 6, 18, 7], X[11, 2, 12, 3]]
In[4]:=
GaussCode[Knot[9, 2]]
Out[4]=  
GaussCode[-1, 9, -2, 1, -3, 8, -4, 7, -5, 6, -9, 2, -6, 5, -7, 4, -8, 3]
In[5]:=
BR[Knot[9, 2]]
Out[5]=  
BR[5, {-1, -1, -1, -2, 1, -2, -3, 2, -3, -4, 3, -4}]
In[6]:=
alex = Alexander[Knot[9, 2]][t]
Out[6]=  
     4

-7 + - + 4 t

t
In[7]:=
Conway[Knot[9, 2]][z]
Out[7]=  
       2
1 + 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[7, 4], Knot[9, 2]}
In[9]:=
{KnotDet[Knot[9, 2]], KnotSignature[Knot[9, 2]]}
Out[9]=  
{15, -2}
In[10]:=
J=Jones[Knot[9, 2]][q]
Out[10]=  
  -10    -9    -8   2    2    2    2    2     -2   1

-q + q - q + -- - -- + -- - -- + -- - q + -

                    7    6    5    4    3         q
q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 2], Knot[11, NonAlternating, 13]}
In[12]:=
A2Invariant[Knot[9, 2]][q]
Out[12]=  
  -32    -30    -24    -22    -8    -6    -2
-q    - q    + q    + q    + q   + q   + q
In[13]:=
Kauffman[Knot[9, 2]][a, z]
Out[13]=  
  2    8    10      9        11      2  2      8  2      10  2

-a + a + a - 4 a z - 4 a z + a z - 6 a z - 7 a z +

  3  3    5  3    7  3       9  3       11  3    4  4      6  4
 a  z  - a  z  + a  z  + 13 a  z  + 10 a   z  + a  z  - 2 a  z  + 

    8  4       10  4    5  5      7  5       9  5      11  5    6  6
 8 a  z  + 11 a   z  + a  z  - 3 a  z  - 10 a  z  - 6 a   z  + a  z  - 

    8  6      10  6    7  7      9  7    11  7    8  8    10  8
5 a z - 6 a z + a z + 2 a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[9, 2]], Vassiliev[3][Knot[9, 2]]}
Out[14]=  
{0, -10}
In[15]:=
Kh[Knot[9, 2]][q, t]
Out[15]=  
 -3   1     1        1        1        1        1        1

q + - + ------ + ------ + ------ + ------ + ------ + ------ +

     q    21  9    17  8    17  7    15  6    13  6    13  5
         q   t    q   t    q   t    q   t    q   t    q   t

   1        1        1       1       1       1       1      1
 ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----
  11  5    11  4    9  4    9  3    7  3    7  2    5  2    3
q t q t q t q t q t q t q t q t