9 33
|  |  | 
|   | Visit 9 33's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 9 33's page at Knotilus! Visit 9 33's page at the original Knot Atlas! | 9 33 Quick Notes | 
Knot presentations
| Planar diagram presentation | X4251 X12,8,13,7 X8394 X2,9,3,10 X18,13,1,14 X14,5,15,6 X6,17,7,18 X16,12,17,11 X10,16,11,15 | 
| Gauss code | 1, -4, 3, -1, 6, -7, 2, -3, 4, -9, 8, -2, 5, -6, 9, -8, 7, -5 | 
| Dowker-Thistlethwaite code | 4 8 14 12 2 16 18 10 6 | 
| Conway Notation | [.21.2] | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["9 33"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 61, 0 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (1, -1) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 33. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
| 
 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | χ | |||||||||
| 9 | 1 | 1 | ||||||||||||||||||
| 7 | 3 | -3 | ||||||||||||||||||
| 5 | 4 | 1 | 3 | |||||||||||||||||
| 3 | 5 | 3 | -2 | |||||||||||||||||
| 1 | 6 | 4 | 2 | |||||||||||||||||
| -1 | 5 | 6 | 1 | |||||||||||||||||
| -3 | 4 | 5 | -1 | |||||||||||||||||
| -5 | 2 | 5 | 3 | |||||||||||||||||
| -7 | 1 | 4 | -3 | |||||||||||||||||
| -9 | 2 | 2 | ||||||||||||||||||
| -11 | 1 | -1 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[Knot[9, 33]] | 
| Out[2]= | 9 | 
| In[3]:= | PD[Knot[9, 33]] | 
| Out[3]= | PD[X[4, 2, 5, 1], X[12, 8, 13, 7], X[8, 3, 9, 4], X[2, 9, 3, 10],X[18, 13, 1, 14], X[14, 5, 15, 6], X[6, 17, 7, 18],X[16, 12, 17, 11], X[10, 16, 11, 15]] | 
| In[4]:= | GaussCode[Knot[9, 33]] | 
| Out[4]= | GaussCode[1, -4, 3, -1, 6, -7, 2, -3, 4, -9, 8, -2, 5, -6, 9, -8, 7, -5] | 
| In[5]:= | BR[Knot[9, 33]] | 
| Out[5]= | BR[4, {-1, 2, -1, 2, 2, -1, -3, 2, -3}] | 
| In[6]:= | alex = Alexander[Knot[9, 33]][t] | 
| Out[6]= | -3 6 14 2 3 | 
| In[7]:= | Conway[Knot[9, 33]][z] | 
| Out[7]= | 2 6 1 + z - z | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {Knot[9, 33], Knot[11, NonAlternating, 55]} | 
| In[9]:= | {KnotDet[Knot[9, 33]], KnotSignature[Knot[9, 33]]} | 
| Out[9]= | {61, 0} | 
| In[10]:= | J=Jones[Knot[9, 33]][q] | 
| Out[10]= | -5 3 6 9 10 2 3 4 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {Knot[9, 33]} | 
| In[12]:= | A2Invariant[Knot[9, 33]][q] | 
| Out[12]= | -16 -12 2 2 3 2 4 8 10 12 | 
| In[13]:= | Kauffman[Knot[9, 33]][a, z] | 
| Out[13]= | 2 32 4 3 5 2 3 z 2 2 4 2 3 z | 
| In[14]:= | {Vassiliev[2][Knot[9, 33]], Vassiliev[3][Knot[9, 33]]} | 
| Out[14]= | {0, -1} | 
| In[15]:= | Kh[Knot[9, 33]][q, t] | 
| Out[15]= | 6 1 2 1 4 2 5 4 | 


