9 35
|
|
![]() |
Visit 9 35's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 35's page at Knotilus! Visit 9 35's page at the original Knot Atlas! |
9_35 is also known as the pretzel knot P(3,3,3). |
Knot presentations
Planar diagram presentation | X1829 X7,14,8,15 X5,16,6,17 X9,18,10,1 X15,6,16,7 X17,10,18,11 X13,2,14,3 X3,12,4,13 X11,4,12,5 |
Gauss code | -1, 7, -8, 9, -3, 5, -2, 1, -4, 6, -9, 8, -7, 2, -5, 3, -6, 4 |
Dowker-Thistlethwaite code | 8 12 16 14 18 4 2 6 10 |
Conway Notation | [3,3,3] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{3,t+1\}} |
Determinant and Signature | { 27, -2 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^7 a^{11}-6 z^5 a^{11}+12 z^3 a^{11}-8 z a^{11}+z^8 a^{10}-4 z^6 a^{10}+3 z^4 a^{10}+z^2 a^{10}+a^{10}+4 z^7 a^9-18 z^5 a^9+23 z^3 a^9-9 z a^9+z^8 a^8+z^6 a^8-15 z^4 a^8+16 z^2 a^8-a^8+3 z^7 a^7-8 z^5 a^7+3 z^3 a^7-z a^7+5 z^6 a^6-15 z^4 a^6+12 z^2 a^6-3 a^6+4 z^5 a^5-6 z^3 a^5+3 z^4 a^4-2 z^2 a^4+2 z^3 a^3+z^2 a^2} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{32}-q^{30}-2 q^{26}-q^{24}+q^{22}+q^{20}+3 q^{18}+2 q^{16}+q^{14}-q^{10}+q^8-q^4+q^2} |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{156}+3 q^{152}-3 q^{150}+2 q^{148}-q^{146}-2 q^{144}+7 q^{142}-9 q^{140}+6 q^{138}-2 q^{136}-2 q^{134}+8 q^{132}-12 q^{130}+5 q^{128}-2 q^{126}-3 q^{124}+3 q^{122}-10 q^{120}-2 q^{118}+4 q^{116}-2 q^{114}+q^{112}-8 q^{110}-2 q^{108}+6 q^{106}-6 q^{104}+5 q^{102}-11 q^{100}+6 q^{98}+8 q^{96}-3 q^{94}+8 q^{92}-10 q^{90}+12 q^{88}+4 q^{86}-5 q^{84}+7 q^{82}-5 q^{80}+5 q^{78}+7 q^{76}-3 q^{74}+2 q^{72}+q^{70}-2 q^{68}+4 q^{66}-6 q^{64}+3 q^{62}-2 q^{60}-2 q^{58}+4 q^{56}-4 q^{54}+3 q^{52}-2 q^{50}+q^{48}-q^{46}-q^{44}+2 q^{42}-3 q^{40}+3 q^{38}+q^{36}+q^{34}-q^{30}+2 q^{28}-2 q^{26}+2 q^{24}-q^{22}-q^{16}+q^{14}-q^{12}+q^{10}} |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{21}-2 q^{17}+q^{15}+q^{13}+2 q^{11}+q^9-q^7+q^5-q^3+q} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-q^{56}+2 q^{54}+2 q^{52}-3 q^{50}+q^{46}-4 q^{44}-3 q^{42}+q^{40}-q^{38}-2 q^{36}+3 q^{34}+3 q^{32}+3 q^{26}-q^{24}-2 q^{22}+q^{20}+q^{18}-2 q^{16}+q^{14}+3 q^{12}-q^{10}+q^8-q^4+q^2} |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{117}+q^{113}+q^{111}-2 q^{109}-3 q^{107}+5 q^{103}+2 q^{101}-4 q^{99}-4 q^{97}+4 q^{95}+7 q^{93}+3 q^{91}-4 q^{89}-3 q^{87}+4 q^{85}+4 q^{83}-q^{81}-8 q^{79}-3 q^{77}+2 q^{75}+q^{73}-7 q^{71}-4 q^{69}+q^{67}+6 q^{65}-2 q^{63}-4 q^{61}+4 q^{59}+9 q^{57}-q^{55}-8 q^{53}+6 q^{49}+2 q^{47}-6 q^{45}-4 q^{43}-q^{41}+6 q^{39}+4 q^{37}-3 q^{35}-6 q^{33}+4 q^{31}+8 q^{29}-5 q^{25}+3 q^{21}-q^{19}-q^{17}+2 q^{13}+q^{11}-q^5+q^3} |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{192}-q^{188}-q^{186}-q^{184}+3 q^{182}+3 q^{180}+q^{178}-2 q^{176}-8 q^{174}-2 q^{172}+4 q^{170}+9 q^{168}+6 q^{166}-8 q^{164}-11 q^{162}-10 q^{160}+3 q^{158}+15 q^{156}+8 q^{154}-q^{152}-17 q^{150}-15 q^{148}+4 q^{146}+15 q^{144}+22 q^{142}+2 q^{140}-17 q^{138}-15 q^{136}-2 q^{134}+23 q^{132}+23 q^{130}-q^{128}-17 q^{126}-21 q^{124}+q^{122}+19 q^{120}+14 q^{118}-7 q^{116}-25 q^{114}-15 q^{112}+9 q^{110}+17 q^{108}+3 q^{106}-15 q^{104}-12 q^{102}+8 q^{100}+17 q^{98}+6 q^{96}-14 q^{94}-12 q^{92}+10 q^{90}+18 q^{88}+2 q^{86}-18 q^{84}-21 q^{82}+6 q^{80}+20 q^{78}+13 q^{76}-6 q^{74}-25 q^{72}-15 q^{70}+6 q^{68}+21 q^{66}+23 q^{64}-4 q^{62}-27 q^{60}-20 q^{58}+6 q^{56}+35 q^{54}+21 q^{52}-14 q^{50}-31 q^{48}-15 q^{46}+20 q^{44}+22 q^{42}-15 q^{38}-11 q^{36}+8 q^{34}+10 q^{32}+2 q^{30}-3 q^{28}-5 q^{26}+5 q^{24}+q^{22}-2 q^{20}-q^{18}-q^{16}+4 q^{14}-q^6+q^4} |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{285}+q^{281}+q^{279}+q^{277}-3 q^{273}-4 q^{271}-q^{269}+2 q^{267}+5 q^{265}+8 q^{263}+3 q^{261}-6 q^{259}-12 q^{257}-11 q^{255}-2 q^{253}+12 q^{251}+20 q^{249}+16 q^{247}-18 q^{243}-27 q^{241}-18 q^{239}+4 q^{237}+27 q^{235}+37 q^{233}+20 q^{231}-11 q^{229}-38 q^{227}-44 q^{225}-23 q^{223}+20 q^{221}+50 q^{219}+46 q^{217}+10 q^{215}-36 q^{213}-66 q^{211}-51 q^{209}+3 q^{207}+57 q^{205}+69 q^{203}+39 q^{201}-26 q^{199}-74 q^{197}-67 q^{195}-10 q^{193}+55 q^{191}+87 q^{189}+58 q^{187}-16 q^{185}-76 q^{183}-76 q^{181}-19 q^{179}+57 q^{177}+92 q^{175}+49 q^{173}-28 q^{171}-83 q^{169}-76 q^{167}-9 q^{165}+65 q^{163}+76 q^{161}+27 q^{159}-46 q^{157}-76 q^{155}-44 q^{153}+29 q^{151}+66 q^{149}+43 q^{147}-11 q^{145}-49 q^{143}-37 q^{141}+15 q^{139}+42 q^{137}+23 q^{135}-19 q^{133}-40 q^{131}-15 q^{129}+30 q^{127}+48 q^{125}+13 q^{123}-44 q^{121}-64 q^{119}-24 q^{117}+36 q^{115}+73 q^{113}+47 q^{111}-23 q^{109}-76 q^{107}-69 q^{105}-16 q^{103}+53 q^{101}+85 q^{99}+61 q^{97}-7 q^{95}-75 q^{93}-95 q^{91}-44 q^{89}+46 q^{87}+106 q^{85}+93 q^{83}-3 q^{81}-100 q^{79}-114 q^{77}-40 q^{75}+66 q^{73}+115 q^{71}+63 q^{69}-34 q^{67}-94 q^{65}-66 q^{63}+11 q^{61}+68 q^{59}+60 q^{57}+4 q^{55}-44 q^{53}-42 q^{51}-3 q^{49}+24 q^{47}+25 q^{45}+3 q^{43}-15 q^{41}-14 q^{39}+2 q^{37}+9 q^{35}+5 q^{33}-q^{31}-q^{29}+q^{25}+q^{23}-2 q^{21}-2 q^{19}+q^{17}+3 q^{15}-q^7+q^5} |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{84}+6 q^{80}-6 q^{78}+12 q^{76}-18 q^{74}+18 q^{72}-22 q^{70}+14 q^{68}-16 q^{66}+4 q^{64}+8 q^{62}-7 q^{60}+20 q^{58}-24 q^{56}+30 q^{54}-35 q^{52}+22 q^{50}-32 q^{48}+16 q^{46}-14 q^{44}+2 q^{42}+8 q^{40}-2 q^{38}+15 q^{36}-4 q^{34}+12 q^{32}-10 q^{30}+7 q^{28}-4 q^{26}+4 q^{24}-6 q^{22}+5 q^{20}+2 q^{18}+4 q^{16}-4 q^{14}+3 q^{12}-2 q^{10}+2 q^8-2 q^6+q^4} |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{82}+q^{80}+q^{78}-q^{76}+q^{74}+3 q^{72}+3 q^{70}-q^{68}-3 q^{66}-q^{64}-q^{62}-5 q^{60}-7 q^{58}-4 q^{56}-2 q^{54}-2 q^{52}-3 q^{50}+2 q^{48}+5 q^{46}+6 q^{44}+4 q^{42}+3 q^{40}+2 q^{38}+q^{36}-q^{34}-q^{32}-q^{30}+q^{28}+3 q^{26}-q^{24}-3 q^{22}+2 q^{20}+4 q^{18}+q^{16}-2 q^{14}+2 q^{10}-q^8-q^6+q^4} |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}+3 q^{62}+2 q^{60}+q^{58}+q^{56}-3 q^{54}-7 q^{52}-6 q^{50}-7 q^{48}-5 q^{46}+2 q^{44}+2 q^{42}+5 q^{40}+6 q^{38}+4 q^{36}+q^{28}+3 q^{24}+3 q^{22}-q^{20}+q^{18}+q^{16}-2 q^{14}+2 q^{10}-q^8-q^6+q^4} |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{43}-q^{41}-q^{39}-2 q^{35}-q^{33}-q^{31}+q^{29}+q^{27}+3 q^{25}+3 q^{23}+2 q^{21}+q^{19}-q^{13}+q^{11}-q^5+q^3} |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{66}-3 q^{62}+2 q^{60}-3 q^{58}+3 q^{56}-3 q^{54}+3 q^{52}-2 q^{50}+q^{48}+q^{46}-2 q^{44}+4 q^{42}-5 q^{40}+6 q^{38}-6 q^{36}+6 q^{34}-4 q^{32}+4 q^{30}-q^{28}+2 q^{26}+q^{24}-q^{22}+3 q^{20}-3 q^{18}+3 q^{16}-2 q^{14}+2 q^{12}-2 q^{10}+q^8-q^6+q^4} |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{108}+3 q^{100}+2 q^{98}-q^{96}-q^{94}+2 q^{92}+2 q^{90}-q^{88}-5 q^{86}-4 q^{84}-q^{82}-q^{80}-5 q^{78}-7 q^{76}-2 q^{74}+2 q^{72}+2 q^{70}-q^{68}+q^{66}+4 q^{64}+5 q^{62}+2 q^{60}+q^{58}+2 q^{56}+3 q^{54}-q^{52}-3 q^{50}-q^{48}+2 q^{46}+q^{44}-q^{42}-2 q^{40}+2 q^{38}+4 q^{36}+q^{34}-2 q^{32}+2 q^{28}+2 q^{26}-q^{24}-2 q^{22}-q^{20}+q^{18}+2 q^{16}-q^{12}-q^{10}+q^6} |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{156}+3 q^{152}-3 q^{150}+2 q^{148}-q^{146}-2 q^{144}+7 q^{142}-9 q^{140}+6 q^{138}-2 q^{136}-2 q^{134}+8 q^{132}-12 q^{130}+5 q^{128}-2 q^{126}-3 q^{124}+3 q^{122}-10 q^{120}-2 q^{118}+4 q^{116}-2 q^{114}+q^{112}-8 q^{110}-2 q^{108}+6 q^{106}-6 q^{104}+5 q^{102}-11 q^{100}+6 q^{98}+8 q^{96}-3 q^{94}+8 q^{92}-10 q^{90}+12 q^{88}+4 q^{86}-5 q^{84}+7 q^{82}-5 q^{80}+5 q^{78}+7 q^{76}-3 q^{74}+2 q^{72}+q^{70}-2 q^{68}+4 q^{66}-6 q^{64}+3 q^{62}-2 q^{60}-2 q^{58}+4 q^{56}-4 q^{54}+3 q^{52}-2 q^{50}+q^{48}-q^{46}-q^{44}+2 q^{42}-3 q^{40}+3 q^{38}+q^{36}+q^{34}-q^{30}+2 q^{28}-2 q^{26}+2 q^{24}-q^{22}-q^{16}+q^{14}-q^{12}+q^{10}} |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 35"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{3,t+1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^7 a^{11}-6 z^5 a^{11}+12 z^3 a^{11}-8 z a^{11}+z^8 a^{10}-4 z^6 a^{10}+3 z^4 a^{10}+z^2 a^{10}+a^{10}+4 z^7 a^9-18 z^5 a^9+23 z^3 a^9-9 z a^9+z^8 a^8+z^6 a^8-15 z^4 a^8+16 z^2 a^8-a^8+3 z^7 a^7-8 z^5 a^7+3 z^3 a^7-z a^7+5 z^6 a^6-15 z^4 a^6+12 z^2 a^6-3 a^6+4 z^5 a^5-6 z^3 a^5+3 z^4 a^4-2 z^2 a^4+2 z^3 a^3+z^2 a^2} |
Vassiliev invariants
V2 and V3: | (7, -18) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 9 35. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | χ | |||||||||
-1 | 1 | 1 | ||||||||||||||||||
-3 | 2 | 1 | -1 | |||||||||||||||||
-5 | 1 | 1 | ||||||||||||||||||
-7 | 3 | 2 | -1 | |||||||||||||||||
-9 | 2 | 1 | 1 | |||||||||||||||||
-11 | 1 | 3 | 2 | |||||||||||||||||
-13 | 3 | 2 | 1 | |||||||||||||||||
-15 | 1 | 1 | ||||||||||||||||||
-17 | 1 | 3 | -2 | |||||||||||||||||
-19 | 0 | |||||||||||||||||||
-21 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 35]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 35]] |
Out[3]= | PD[X[1, 8, 2, 9], X[7, 14, 8, 15], X[5, 16, 6, 17], X[9, 18, 10, 1],X[15, 6, 16, 7], X[17, 10, 18, 11], X[13, 2, 14, 3], X[3, 12, 4, 13],X[11, 4, 12, 5]] |
In[4]:= | GaussCode[Knot[9, 35]] |
Out[4]= | GaussCode[-1, 7, -8, 9, -3, 5, -2, 1, -4, 6, -9, 8, -7, 2, -5, 3, -6, 4] |
In[5]:= | BR[Knot[9, 35]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, -2, -3, 2, 2, -4, 3, -2, -4, -3}] |
In[6]:= | alex = Alexander[Knot[9, 35]][t] |
Out[6]= | 7 |
In[7]:= | Conway[Knot[9, 35]][z] |
Out[7]= | 2 1 + 7 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 35]} |
In[9]:= | {KnotDet[Knot[9, 35]], KnotSignature[Knot[9, 35]]} |
Out[9]= | {27, -2} |
In[10]:= | J=Jones[Knot[9, 35]][q] |
Out[10]= | -10 -9 3 4 3 5 4 3 2 1 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 35]} |
In[12]:= | A2Invariant[Knot[9, 35]][q] |
Out[12]= | -32 -30 2 -24 -22 -20 3 2 -14 -10 |
In[13]:= | Kauffman[Knot[9, 35]][a, z] |
Out[13]= | 6 8 10 7 9 11 2 2 4 2 |
In[14]:= | {Vassiliev[2][Knot[9, 35]], Vassiliev[3][Knot[9, 35]]} |
Out[14]= | {0, -18} |
In[15]:= | Kh[Knot[9, 35]][q, t] |
Out[15]= | -3 1 1 1 3 1 3 2 |