9 42

From Knot Atlas
Revision as of 20:52, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 41.gif

9_41

9 43.gif

9_43

9 42.gif Visit 9 42's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 42's page at Knotilus!

Visit 9 42's page at the original Knot Atlas!

9 42 Quick Notes


9_42 is Alexander Stoimenow's favourite knot!

Alsacian chair, alsacian museum, Strasbourg, France

Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X16,12,17,11 X14,7,15,8 X6,15,7,16 X18,14,1,13 X12,18,13,17
Gauss code -1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8
Dowker-Thistlethwaite code 4 8 10 -14 2 -16 -18 -6 -12
Conway Notation [22,3,2-]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [-3][-5]
Hyperbolic Volume 4.05686
A-Polynomial See Data:9 42/A-polynomial

[edit Notes for 9 42's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 42's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 7, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 42. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-4-3-2-1012χ
7      11
5       0
3    11 0
1   11  0
-1   11  0
-3 11    0
-5       0
-71      1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 42]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 42]]
Out[3]=  
PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], 
 X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16], 

X[18, 14, 1, 13], X[12, 18, 13, 17]]
In[4]:=
GaussCode[Knot[9, 42]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8]
In[5]:=
BR[Knot[9, 42]]
Out[5]=  
BR[4, {1, 1, 1, -2, -1, -1, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[9, 42]][t]
Out[6]=  
      -2   2          2

-1 - t + - + 2 t - t

t
In[7]:=
Conway[Knot[9, 42]][z]
Out[7]=  
       2    4
1 - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 42]}
In[9]:=
{KnotDet[Knot[9, 42]], KnotSignature[Knot[9, 42]]}
Out[9]=  
{7, 2}
In[10]:=
J=Jones[Knot[9, 42]][q]
Out[10]=  
      -3    -2   1        2    3

-1 + q - q + - + q - q + q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 42]}
In[12]:=
A2Invariant[Knot[9, 42]][q]
Out[12]=  
      -10    -8    -6    -2    2    6    8    10
-1 + q    + q   + q   - q   - q  + q  + q  + q
In[13]:=
Kauffman[Knot[9, 42]][a, z]
Out[13]=  
                                          2                3
    2       2   2 z               2   6 z       2  2   6 z         3

-3 - -- - 2 a - --- - 2 a z + 12 z + ---- + 6 a z + ---- + 6 a z -

     2           a                      2               a
    a                                  a

            4                5                    6            7
     4   5 z       2  4   5 z         5      6   z     2  6   z       7
 10 z  - ---- - 5 a  z  - ---- - 5 a z  + 2 z  + -- + a  z  + -- + a z
           2               a                      2           a
a a
In[14]:=
{Vassiliev[2][Knot[9, 42]], Vassiliev[3][Knot[9, 42]]}
Out[14]=  
{0, 0}
In[15]:=
Kh[Knot[9, 42]][q, t]
Out[15]=  
1        3     1       1       1      1    q    3      7  2

- + q + q + ----- + ----- + ----- + --- + - + q t + q t q 7 4 3 3 3 2 q t t

q t q t q t