9 49

From Knot Atlas
Revision as of 20:46, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 48.gif

9_48

10 1.gif

10_1

9 49.gif Visit 9 49's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 49's page at Knotilus!

Visit 9 49's page at the original Knot Atlas!

9 49 Quick Notes


9 49 Further Notes and Views

Knot presentations

Planar diagram presentation X6271 X12,8,13,7 X5,15,6,14 X3,11,4,10 X11,3,12,2 X15,5,16,4 X17,9,18,8 X9,17,10,16 X18,14,1,13
Gauss code 1, 5, -4, 6, -3, -1, 2, 7, -8, 4, -5, -2, 9, 3, -6, 8, -7, -9
Dowker-Thistlethwaite code 6 -10 -14 12 -16 -2 18 -4 -8
Conway Notation [-20:-20:-20]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [3][-12]
Hyperbolic Volume 9.42707
A-Polynomial See Data:9 49/A-polynomial

[edit Notes for 9 49's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 49's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 25, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (6, 14)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 49. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
01234567χ
19       2-2
17      1 1
15     32 -1
13    21  1
11   23   1
9  22    0
7  2     2
512      -1
31       1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 49]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 49]]
Out[3]=  
PD[X[6, 2, 7, 1], X[12, 8, 13, 7], X[5, 15, 6, 14], X[3, 11, 4, 10], 
 X[11, 3, 12, 2], X[15, 5, 16, 4], X[17, 9, 18, 8], X[9, 17, 10, 16], 

X[18, 14, 1, 13]]
In[4]:=
GaussCode[Knot[9, 49]]
Out[4]=  
GaussCode[1, 5, -4, 6, -3, -1, 2, 7, -8, 4, -5, -2, 9, 3, -6, 8, -7, -9]
In[5]:=
BR[Knot[9, 49]]
Out[5]=  
BR[4, {1, 1, 2, 1, 1, -3, 2, -1, 2, 3, 3}]
In[6]:=
alex = Alexander[Knot[9, 49]][t]
Out[6]=  
    3    6            2

7 + -- - - - 6 t + 3 t

    2   t
t
In[7]:=
Conway[Knot[9, 49]][z]
Out[7]=  
       2      4
1 + 6 z  + 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 49]}
In[9]:=
{KnotDet[Knot[9, 49]], KnotSignature[Knot[9, 49]]}
Out[9]=  
{25, 4}
In[10]:=
J=Jones[Knot[9, 49]][q]
Out[10]=  
 2      3      4      5      6      7      8      9
q  - 2 q  + 4 q  - 4 q  + 5 q  - 4 q  + 3 q  - 2 q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 49]}
In[12]:=
A2Invariant[Knot[9, 49]][q]
Out[12]=  
 6    8    10    14      16    18      20    22    24    26      28
q  - q  + q   + q   + 3 q   + q   + 2 q   - q   - q   - q   - 2 q
In[13]:=
Kauffman[Knot[9, 49]][a, z]
Out[13]=  
                             2        2      2      2      3      3

-3 4 4 z 2 z 2 z z 10 z 9 z 2 z 3 z 3 z -- - -- - --- - --- + --- - --- + ----- + ---- - ---- + ---- + ---- -

8    6    11    9     7     10     8       6      4     11      9

a a a a a a a a a a a

    3      3      4      4    4    5    5      5    6       6      6
 3 z    3 z    9 z    8 z    z    z    z    2 z    z     4 z    3 z
 ---- - ---- - ---- - ---- + -- - -- + -- + ---- + --- + ---- + ---- + 
   7      5      8      6     4    9    7     5     10     8      6
  a      a      a      a     a    a    a     a     a      a      a

  7    7
 z    z
 -- + --
  9    7
a a
In[14]:=
{Vassiliev[2][Knot[9, 49]], Vassiliev[3][Knot[9, 49]]}
Out[14]=  
{0, 14}
In[15]:=
Kh[Knot[9, 49]][q, t]
Out[15]=  
 3    5      5        7  2      9  2      9  3      11  3      11  4

q + q + 2 q t + 2 q t + 2 q t + 2 q t + 2 q t + 3 q t +

    13  4    13  5      15  5      15  6    17  6      19  7
2 q t + q t + 3 q t + 2 q t + q t + 2 q t