10 103
|
|
Visit 10 103's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 103's page at Knotilus! Visit 10 103's page at the original Knot Atlas! |
10 103 Quick Notes |
10 103 Further Notes and Views
Knot presentations
Planar diagram presentation | X6271 X18,6,19,5 X20,13,1,14 X16,7,17,8 X10,3,11,4 X4,11,5,12 X14,9,15,10 X8,15,9,16 X12,19,13,20 X2,18,3,17 |
Gauss code | 1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, -2, 9, -3 |
Dowker-Thistlethwaite code | 6 10 18 16 14 4 20 8 2 12 |
Conway Notation | [30:2:2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 103"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 75, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (3, -4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 103. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | χ | |||||||||
5 | 1 | -1 | |||||||||||||||||||
3 | 2 | 2 | |||||||||||||||||||
1 | 4 | 1 | -3 | ||||||||||||||||||
-1 | 6 | 2 | 4 | ||||||||||||||||||
-3 | 6 | 5 | -1 | ||||||||||||||||||
-5 | 7 | 5 | 2 | ||||||||||||||||||
-7 | 5 | 6 | 1 | ||||||||||||||||||
-9 | 4 | 7 | -3 | ||||||||||||||||||
-11 | 2 | 5 | 3 | ||||||||||||||||||
-13 | 1 | 4 | -3 | ||||||||||||||||||
-15 | 2 | 2 | |||||||||||||||||||
-17 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 103]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 103]] |
Out[3]= | PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[16, 7, 17, 8],X[10, 3, 11, 4], X[4, 11, 5, 12], X[14, 9, 15, 10], X[8, 15, 9, 16],X[12, 19, 13, 20], X[2, 18, 3, 17]] |
In[4]:= | GaussCode[Knot[10, 103]] |
Out[4]= | GaussCode[1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, -2, 9, -3] |
In[5]:= | BR[Knot[10, 103]] |
Out[5]= | BR[4, {-1, -1, -2, 1, 3, -2, -2, 3, -2, -2, 3}] |
In[6]:= | alex = Alexander[Knot[10, 103]][t] |
Out[6]= | 2 8 17 2 3 |
In[7]:= | Conway[Knot[10, 103]][z] |
Out[7]= | 2 4 6 1 + 3 z + 4 z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 40], Knot[10, 103]} |
In[9]:= | {KnotDet[Knot[10, 103]], KnotSignature[Knot[10, 103]]} |
Out[9]= | {75, -2} |
In[10]:= | J=Jones[Knot[10, 103]][q] |
Out[10]= | -8 3 6 9 12 13 11 10 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 40], Knot[10, 103]} |
In[12]:= | A2Invariant[Knot[10, 103]][q] |
Out[12]= | -24 -22 -20 -18 2 3 -12 -8 4 -4 |
In[13]:= | Kauffman[Knot[10, 103]][a, z] |
Out[13]= | 2 6 z 3 5 7 2 2 2 |
In[14]:= | {Vassiliev[2][Knot[10, 103]], Vassiliev[3][Knot[10, 103]]} |
Out[14]= | {0, -4} |
In[15]:= | Kh[Knot[10, 103]][q, t] |
Out[15]= | 5 6 1 2 1 4 2 5 4 |