7 5

From Knot Atlas
Revision as of 19:10, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

7 4.gif

7_4

7 6.gif

7_6

7 5.gif Visit 7 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 7 5's page at Knotilus!

Visit 7 5's page at the original Knot Atlas!

7 5 Quick Notes


7 5 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,12,6,13 X7,14,8,1 X13,6,14,7 X11,8,12,9 X9,2,10,3
Gauss code -1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4
Dowker-Thistlethwaite code 4 10 12 14 2 8 6
Conway Notation [322]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{$\$$Failed}}
Hyperbolic Volume 6.44354
A-Polynomial See Data:7 5/A-polynomial

[edit Notes for 7 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 7 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 17, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (4, -8)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 7 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-3       11
-5      110
-7     2  2
-9    11  0
-11   22   0
-13  11    0
-15 12     -1
-17 1      1
-191       -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[7, 5]]
Out[2]=  
7
In[3]:=
PD[Knot[7, 5]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 12, 6, 13], X[7, 14, 8, 1], 
  X[13, 6, 14, 7], X[11, 8, 12, 9], X[9, 2, 10, 3]]
In[4]:=
GaussCode[Knot[7, 5]]
Out[4]=  
GaussCode[-1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4]
In[5]:=
BR[Knot[7, 5]]
Out[5]=  
BR[3, {-1, -1, -1, -1, -2, 1, -2, -2}]
In[6]:=
alex = Alexander[Knot[7, 5]][t]
Out[6]=  
    2    4            2

5 + -- - - - 4 t + 2 t

    2   t
t
In[7]:=
Conway[Knot[7, 5]][z]
Out[7]=  
       2      4
1 + 4 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[7, 5], Knot[10, 130]}
In[9]:=
{KnotDet[Knot[7, 5]], KnotSignature[Knot[7, 5]]}
Out[9]=  
{17, -4}
In[10]:=
J=Jones[Knot[7, 5]][q]
Out[10]=  
  -9   2    3    3    3    3     -3    -2

-q + -- - -- + -- - -- + -- - q + q

       8    7    6    5    4
q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[7, 5]}
In[12]:=
A2Invariant[Knot[7, 5]][q]
Out[12]=  
  -28    -22    -18    -16    -14    -12    2     -6

-q - q - q + q + q + q + --- + q

                                           10
q
In[13]:=
Kauffman[Knot[7, 5]][a, z]
Out[13]=  
   4    8    5      7      9      11        4  2    8  2      10  2

2 a - a - a z + a z + a z - a z - 3 a z + a z - 2 a z -

  5  3      7  3      9  3    11  3    4  4    6  4      10  4
 a  z  - 4 a  z  - 2 a  z  + a   z  + a  z  - a  z  + 2 a   z  + 

  5  5      7  5      9  5    6  6    8  6
a z + 3 a z + 2 a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[7, 5]], Vassiliev[3][Knot[7, 5]]}
Out[14]=  
{0, -8}
In[15]:=
Kh[Knot[7, 5]][q, t]
Out[15]=  
 -5    -3     1        1        1        2        1        1

q + q + ------ + ------ + ------ + ------ + ------ + ------ +

            19  7    17  6    15  6    15  5    13  5    13  4
           q   t    q   t    q   t    q   t    q   t    q   t

   2        2        1       1       2      1
 ------ + ------ + ----- + ----- + ----- + ----
  11  4    11  3    9  3    9  2    7  2    5
q t q t q t q t q t q t