In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 71]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12],
X[13, 7, 14, 6], X[9, 19, 10, 18], X[15, 20, 16, 1],
X[19, 16, 20, 17], X[17, 11, 18, 10], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 71]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9,
6, -8, 7] |
In[4]:= | DTCode[Knot[10, 71]] |
Out[4]= | DTCode[4, 8, 12, 2, 18, 14, 6, 20, 10, 16] |
In[5]:= | br = BR[Knot[10, 71]] |
Out[5]= | BR[5, {-1, -1, 2, -1, -3, 2, 2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[10, 71]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 71]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 71]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 71]][t] |
Out[10]= | -3 7 18 2 3
25 - t + -- - -- - 18 t + 7 t - t
2 t
t |
In[11]:= | Conway[Knot[10, 71]][z] |
Out[11]= | 2 4 6
1 + z + z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 71], Knot[11, NonAlternating, 156],
Knot[11, NonAlternating, 179]} |
In[13]:= | {KnotDet[Knot[10, 71]], KnotSignature[Knot[10, 71]]} |
Out[13]= | {77, 0} |
In[14]:= | Jones[Knot[10, 71]][q] |
Out[14]= | -5 3 6 10 12 2 3 4 5
13 - q + -- - -- + -- - -- - 12 q + 10 q - 6 q + 3 q - q
4 3 2 q
q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 71], Knot[10, 104]} |
In[16]:= | A2Invariant[Knot[10, 71]][q] |
Out[16]= | -16 -12 2 3 -6 -4 2 2 4 6 8
-3 - q + q - --- + -- + q - q + -- + 2 q - q + q + 3 q -
10 8 2
q q q
10 12 16
2 q + q - q |
In[17]:= | HOMFLYPT[Knot[10, 71]][a, z] |
Out[17]= | 2 2
-4 3 2 4 2 z 4 z 2 2 4 2 4
-3 - a + -- + 3 a - a - 5 z - -- + ---- + 4 a z - a z - 3 z +
2 4 2
a a a
4
2 z 2 4 6
---- + 2 a z - z
2
a |
In[18]:= | Kauffman[Knot[10, 71]][a, z] |
Out[18]= | -4 3 2 4 z z z 3 5 2
-3 - a - -- - 3 a - a + -- + -- - - - a z + a z + a z + 12 z +
2 5 3 a
a a a
2 2 3 3
4 z 10 z 2 2 4 2 2 z 7 z 3 5 3
---- + ----- + 10 a z + 4 a z - ---- + ---- + 7 a z - 2 a z -
4 2 5 a
a a a
4 4 5 5 5
4 6 z 12 z 2 4 4 4 z 5 z 15 z
12 z - ---- - ----- - 12 a z - 6 a z + -- - ---- - ----- -
4 2 5 3 a
a a a a
6 6
5 3 5 5 5 6 3 z 2 z 2 6 4 6
15 a z - 5 a z + a z - 2 z + ---- + ---- + 2 a z + 3 a z +
4 2
a a
7 7 8 9
4 z 8 z 7 3 7 8 3 z 2 8 z 9
---- + ---- + 8 a z + 4 a z + 6 z + ---- + 3 a z + -- + a z
3 a 2 a
a a |
In[19]:= | {Vassiliev[2][Knot[10, 71]], Vassiliev[3][Knot[10, 71]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[10, 71]][q, t] |
Out[20]= | 7 1 2 1 4 2 6 4
- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
6 6 3 3 2 5 2 5 3 7 3
---- + --- + 6 q t + 6 q t + 4 q t + 6 q t + 2 q t + 4 q t +
3 q t
q t
7 4 9 4 11 5
q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 71], 2][q] |
Out[21]= | -15 3 -13 9 17 -10 37 47 12 89 77
161 + q - --- + q + --- - --- + q + -- - -- - -- + -- - -- -
14 12 11 9 8 7 6 5
q q q q q q q q
42 140 87 73 2 3 4 5 6
-- + --- - -- - -- - 73 q - 87 q + 140 q - 42 q - 77 q + 89 q -
4 3 2 q
q q q
7 8 9 10 11 12 13 14 15
12 q - 47 q + 37 q + q - 17 q + 9 q + q - 3 q + q |