(For In[1] see Setup)
| 
| In[1]:= | ?SymmetryType |  
| SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral. |  | 
| In[2]:= | SymmetryType::about |  
| The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |  | 
The unknotting number of a knot  is the minimal number of crossing changes needed in order to unknot
 is the minimal number of crossing changes needed in order to unknot  .
.
| 
| In[3]:= | ?UnknottingNumber |  
| UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |  | 
| In[4]:= | UnknottingNumber::about |  
| The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |  | 
Of the 512 knots whose unknotting number is known to KnotTheory`, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:
| In[5]:= | Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer] | 
| Out[5]= | u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5] | 
There are 4 knots with up to 9 crossings whose unknotting number is unknown:
| In[6]:= | Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &] | 
| Out[6]= | {Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]} | 
| 
| In[7]:= | ?ThreeGenus |  
| ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`. |  | 
| In[8]:= | ThreeGenus::about |  
| The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |  | 
The bridge index' of a knot  is the minimal number of local maxima (or local minima) in a generic smooth embedding of
 is the minimal number of local maxima (or local minima) in a generic smooth embedding of  in
 in  .
.
| 
| In[9]:= | ?BridgeIndex |  
| BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`. |  | 
| In[10]:= | BridgeIndex::about |  
| The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |  | 
An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:
| In[11]:= | Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &] | 
| Out[11]= | {Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], 
 
  Knot[9, 6], Knot[9, 7], Knot[9, 8], Knot[9, 9], Knot[9, 10], 
 
  Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], Knot[9, 15], 
 
  Knot[9, 17], Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21], 
 
  Knot[9, 23], Knot[9, 26], Knot[9, 27], Knot[9, 31]} | 
The super bridge index of a knot  is the minimal number, in a generic smooth embedding of
 is the minimal number, in a generic smooth embedding of  in
 in  , of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.
, of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.
| 
| In[12]:= | ?SuperBridgeIndex |  
| SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |  | 
| In[13]:= | SuperBridgeIndex::about |  
| The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |  | 
| 
| In[14]:= | ?NakanishiIndex |  
| NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`. |  | 
| In[15]:= | NakanishiIndex::about |  
| The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |  | 
| In[16]:= | Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]] | 
| In[17]:= | Profile[Knot[9,24]] | 
| Out[17]= | Profile[Reversible, 1, 3, 3, {4, 6}, 1] | 
| In[18]:= | Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&] | 
| Out[18]= | {Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]} | 
| In[19]:= | Alexander[#][t]& /@ Ks | 
| Out[19]= |        -3   5    10             2    3
{13 - t   + -- - -- - 10 t + 5 t  - t , 
             2   t
            t
 
         -3   5    12             2    3
  -15 + t   - -- + -- + 12 t - 5 t  + t , 
               2   t
              t
 
        -3   5    12             2    3
  17 - t   + -- - -- - 12 t + 5 t  - t , 
              2   t
             t
 
        -3   6    16             2    3
  23 - t   + -- - -- - 16 t + 6 t  - t }
              2   t
             t |