In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 2]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 2]] |
Out[3]= | PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[12, 6, 13, 5],
X[8, 4, 9, 3], X[16, 10, 17, 9], X[18, 12, 5, 11], X[10, 18, 11, 17],
X[2, 14, 3, 13]] |
In[4]:= | GaussCode[Link[9, Alternating, 2]] |
Out[4]= | GaussCode[{1, -9, 5, -3}, {4, -1, 2, -5, 6, -8, 7, -4, 9, -2, 3, -6, 8,
-7}] |
In[5]:= | BR[Link[9, Alternating, 2]] |
Out[5]= | BR[Link[9, Alternating, 2]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 2]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 2]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 2]], KnotSignature[Link[9, Alternating, 2]]} |
Out[9]= | {Infinity, 3} |
In[10]:= | J=Jones[Link[9, Alternating, 2]][q] |
Out[10]= | -(3/2) 3 3/2 5/2 7/2 9/2
q - ------- + 3 Sqrt[q] - 6 q + 6 q - 7 q + 6 q -
Sqrt[q]
11/2 13/2 15/2
4 q + 3 q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 2]][q] |
Out[12]= | -4 -2 2 4 6 8 10 14 16 20
1 - q + q + 3 q + 4 q + 2 q + 4 q - q - 2 q - 2 q - q +
22
q |
In[13]:= | Kauffman[Link[9, Alternating, 2]][a, z] |
Out[13]= | 2 2
-6 3 3 1 3 2 2 z 3 z z 2 2 z 2 z
-a - -- - -- + ---- + ---- + --- + --- + --- + - - z + ---- + ---- -
4 2 5 3 a z 5 3 a 8 6
a a a z a z a a a a
2 3 3 3 3 3 4 4 4
z z 3 z 6 z 22 z 12 z 4 3 z 3 z 3 z
-- - -- + ---- - ---- - ----- - ----- + 3 z - ---- + ---- + ---- -
2 9 7 5 3 a 8 6 4
a a a a a a a a
5 5 5 5 6 6 6 7 7
4 z 8 z 24 z 12 z 6 4 z 2 z 5 z 4 z 7 z
---- + ---- + ----- + ----- - z - ---- + ---- + ---- - ---- - ---- -
7 5 3 a 6 4 2 5 3
a a a a a a a a
7 8 8
3 z 2 z 2 z
---- - ---- - ----
a 4 2
a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 2]], Vassiliev[3][Link[9, Alternating, 2]]} |
Out[14]= | 3
{0, -(-)}
2 |
In[15]:= | Kh[Link[9, Alternating, 2]][q, t] |
Out[15]= | 2
2 4 1 -2 2 1 2 q 4 6
5 q + 3 q + ----- + t + ----- + - + ---- + 3 q t + 3 q t +
4 3 2 2 t t
q t q t
6 2 8 2 8 3 10 3 10 4 12 4
4 q t + 3 q t + 2 q t + 4 q t + 2 q t + 2 q t +
12 5 14 5 16 6
q t + 2 q t + q t |