In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 8]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 8]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[16, 8, 17, 7], X[18, 13, 5, 14],
X[14, 17, 15, 18], X[12, 10, 13, 9], X[8, 16, 9, 15], X[2, 5, 3, 6],
X[4, 12, 1, 11]] |
In[4]:= | GaussCode[Link[9, Alternating, 8]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 3, -7, 6, -2, 9, -6, 4, -5, 7, -3, 5,
-4}] |
In[5]:= | BR[Link[9, Alternating, 8]] |
Out[5]= | BR[Link[9, Alternating, 8]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 8]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 8]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 8]], KnotSignature[Link[9, Alternating, 8]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[9, Alternating, 8]][q] |
Out[10]= | -(7/2) 2 5 7 3/2 5/2
-q + ---- - ---- + ------- - 8 Sqrt[q] + 8 q - 8 q +
5/2 3/2 Sqrt[q]
q q
7/2 9/2 11/2
5 q - 3 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 8]][q] |
Out[12]= | -12 -10 3 -2 2 4 8 10 12 14
1 + q + q + -- - q - 2 q + 2 q + 2 q + 2 q - q + 2 q -
6
q
18
q |
In[13]:= | Kauffman[Link[9, Alternating, 8]][a, z] |
Out[13]= | 3
1 2 2 a a 2 z 5 z 8 z 3 2
1 + ---- + --- + --- + -- - --- - --- - --- - 8 a z - 3 a z - 3 z +
3 a z z z 5 3 a
a z a a
2 2 2 3 3 3
z z 3 z 2 2 4 z 7 z 8 z 3 3 3
-- - -- - ---- - 2 a z + ---- + ---- + ---- + 8 a z + 3 a z +
6 4 2 5 3 a
a a a a a
4 4 4 5 5 5
4 z 4 z 10 z 2 4 3 z z 3 z 3 5
9 z - -- + ---- + ----- + 4 a z - ---- - -- + ---- - a z -
6 4 2 5 3 a
a a a a a
6 6 7 7 8
6 4 z 6 z 2 6 3 z 5 z 7 8 z
4 z - ---- - ---- - 2 a z - ---- - ---- - 2 a z - z - --
4 2 3 a 2
a a a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 8]], Vassiliev[3][Link[9, Alternating, 8]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Link[9, Alternating, 8]][q, t] |
Out[15]= | 2 1 1 1 4 1 4 3 2
5 + 5 q + ----- + ----- + ----- + ----- + ----- + - + ---- + 5 q t +
8 4 6 3 4 3 4 2 2 2 t 2
q t q t q t q t q t q t
4 4 2 6 2 6 3 8 3 8 4 10 4
3 q t + 3 q t + 5 q t + 2 q t + 3 q t + q t + 2 q t +
12 5
q t |