In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 11]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 11]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[14, 8, 15, 7], X[18, 16, 5, 15],
X[16, 9, 17, 10], X[8, 17, 9, 18], X[10, 14, 11, 13], X[2, 5, 3, 6],
X[4, 11, 1, 12]] |
In[4]:= | GaussCode[Link[9, Alternating, 11]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 3, -6, 5, -7, 9, -2, 7, -3, 4, -5, 6,
-4}] |
In[5]:= | BR[Link[9, Alternating, 11]] |
Out[5]= | BR[Link[9, Alternating, 11]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 11]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 11]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 11]], KnotSignature[Link[9, Alternating, 11]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[9, Alternating, 11]][q] |
Out[10]= | -(13/2) 2 5 7 9 9 8
-q + ----- - ---- + ---- - ---- + ---- - ------- + 6 Sqrt[q] -
11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q
3/2 5/2
4 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 11]][q] |
Out[12]= | -22 2 -16 2 2 -10 2 -2 2 6 8
3 + q + --- + q + --- - --- + q + -- - q - q + 2 q - q
20 14 12 4
q q q q |
In[13]:= | Kauffman[Link[9, Alternating, 11]][a, z] |
Out[13]= | 3 5 7
4 a 2 a 2 a a 3 5 7 2
a + - + ---- + ---- + -- - 4 a z - 8 a z - 7 a z - 3 a z - 2 z -
z z z z
3
2 2 4 2 6 2 4 z 3 3 3 5 3
7 a z - 7 a z - 2 a z + ---- + 7 a z + 7 a z + 7 a z +
a
4 5
7 3 4 z 2 4 4 4 6 4 4 z
3 a z + 8 z - -- + 17 a z + 12 a z + 4 a z - ---- +
2 a
a
3 5 7 5 6 2 6 4 6 6 6 7
5 a z - a z - 6 z - 9 a z - 5 a z - 2 a z - 4 a z -
3 7 5 7 2 8 4 8
6 a z - 2 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 11]], Vassiliev[3][Link[9, Alternating, 11]]} |
Out[14]= | 137
{0, -(---)}
24 |
In[15]:= | Kh[Link[9, Alternating, 11]][q, t] |
Out[15]= | 4 1 1 1 4 2 4 3
5 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
2 14 6 12 5 10 5 10 4 8 4 8 3 6 3
q q t q t q t q t q t q t q t
5 4 4 5 2 2 2 4 2 6 3
----- + ----- + ---- + ---- + 3 t + 3 q t + q t + 3 q t + q t
6 2 4 2 4 2
q t q t q t q t |