In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 32]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 32]] |
Out[3]= | PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[18, 13, 7, 14], X[14, 9, 15, 10],
X[10, 17, 11, 18], X[16, 5, 17, 6], X[2, 7, 3, 8], X[4, 11, 5, 12],
X[6, 15, 1, 16]] |
In[4]:= | GaussCode[Link[9, Alternating, 32]] |
Out[4]= | GaussCode[{1, -7, 2, -8, 6, -9},
{7, -1, 4, -5, 8, -2, 3, -4, 9, -6, 5, -3}] |
In[5]:= | BR[Link[9, Alternating, 32]] |
Out[5]= | BR[Link[9, Alternating, 32]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 32]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 32]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 32]], KnotSignature[Link[9, Alternating, 32]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[9, Alternating, 32]][q] |
Out[10]= | -(21/2) 3 5 7 8 9 7 6 3
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- -
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2
q q q q q q q q
-(3/2)
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 32]][q] |
Out[12]= | -34 2 -30 4 -22 2 -18 2 -12 2 -8
-q - --- + q + --- + q + --- + q + --- - q + --- + q -
32 24 20 14 10
q q q q q
2 -4
-- + q
6
q |
In[13]:= | Kauffman[Link[9, Alternating, 32]][a, z] |
Out[13]= | 7 9 11
8 10 12 2 a 3 a a 5 7 9
3 a + 3 a + a - ---- - ---- - --- - 3 a z + 6 a z + 11 a z +
z z z
11 6 2 8 2 10 2 12 2 3 3
2 a z - 3 a z - 14 a z - 14 a z - 3 a z - a z +
5 3 7 3 9 3 11 3 4 4 6 4
6 a z - 6 a z - 22 a z - 9 a z - 3 a z + 9 a z +
8 4 10 4 12 4 5 5 7 5 9 5
21 a z + 12 a z + 3 a z - 6 a z + 10 a z + 26 a z +
11 5 6 6 8 6 10 6 12 6 7 7 9 7
10 a z - 7 a z - 5 a z + a z - a z - 6 a z - 9 a z -
11 7 8 8 10 8
3 a z - 2 a z - 2 a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 32]], Vassiliev[3][Link[9, Alternating, 32]]} |
Out[14]= | 73
{0, -(--)}
16 |
In[15]:= | Kh[Link[9, Alternating, 32]][q, t] |
Out[15]= | -4 -2 1 2 1 3 2 4
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
22 9 20 8 18 8 18 7 16 7 16 6
q t q t q t q t q t q t
4 5 3 4 5 3 4 3
------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
14 6 14 5 12 5 12 4 10 4 10 3 8 3 8 2
q t q t q t q t q t q t q t q t
3 3
----- + ----
6 2 4
q t q t |