In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 9]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 9]] |
Out[3]= | PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[16, 9, 17, 10], X[8, 15, 9, 16],
X[4, 17, 1, 18], X[12, 6, 13, 5], X[10, 4, 11, 3], X[18, 12, 5, 11],
X[2, 14, 3, 13]] |
In[4]:= | GaussCode[Link[9, Alternating, 9]] |
Out[4]= | GaussCode[{1, -9, 7, -5}, {6, -1, 2, -4, 3, -7, 8, -6, 9, -2, 4, -3, 5,
-8}] |
In[5]:= | BR[Link[9, Alternating, 9]] |
Out[5]= | BR[Link[9, Alternating, 9]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 9]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 9]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 9]], KnotSignature[Link[9, Alternating, 9]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[9, Alternating, 9]][q] |
Out[10]= | -(11/2) 3 5 7 8 9 3/2
q - ---- + ---- - ---- + ---- - ------- + 6 Sqrt[q] - 5 q +
9/2 7/2 5/2 3/2 Sqrt[q]
q q q q
5/2 7/2
3 q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 9]][q] |
Out[12]= | -16 -14 -12 -10 -8 -6 3 2 6 8 10
4 - q + q - q + q + q - q + -- + q + q - q + q
4
q |
In[13]:= | Kauffman[Link[9, Alternating, 9]][a, z] |
Out[13]= | 2
1 a 4 z 3 2 2 z 2 2 4 2
1 - --- - - + --- + 8 a z + 4 a z - 3 z - ---- - 3 a z - a z +
a z z a 2
a
3 3 4
6 2 2 z 10 z 3 3 3 5 3 4 7 z
a z + ---- - ----- - 24 a z - 8 a z + 4 a z + 4 z + ---- +
3 a 2
a a
5 5
2 4 4 4 6 4 z 11 z 5 3 5
3 a z + 5 a z - a z - -- + ----- + 22 a z + 7 a z -
3 a
a
6 7
5 5 6 3 z 4 6 4 z 7 3 7 8
3 a z + z - ---- - 4 a z - ---- - 8 a z - 4 a z - 2 z -
2 a
a
2 8
2 a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 9]], Vassiliev[3][Link[9, Alternating, 9]]} |
Out[14]= | {0, 1} |
In[15]:= | Kh[Link[9, Alternating, 9]][q, t] |
Out[15]= | 5 1 2 1 3 2 4 3
6 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
2 12 5 10 4 8 4 8 3 6 3 6 2 4 2
q q t q t q t q t q t q t q t
4 4 2 2 2 4 2 4 3 6 3
---- + ---- + 3 t + 3 q t + 2 q t + 3 q t + q t + 2 q t +
4 2
q t q t
8 4
q t |