In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 5]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 5]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 8, 15, 7], X[18, 16, 5, 15],
X[16, 12, 17, 11], X[12, 18, 13, 17], X[8, 14, 9, 13], X[2, 5, 3, 6],
X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[9, Alternating, 5]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 3, -7, 9, -2, 5, -6, 7, -3, 4, -5, 6,
-4}] |
In[5]:= | BR[Link[9, Alternating, 5]] |
Out[5]= | BR[Link[9, Alternating, 5]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 5]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 5]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 5]], KnotSignature[Link[9, Alternating, 5]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[9, Alternating, 5]][q] |
Out[10]= | -(7/2) 2 6 7 3/2 5/2
-q + ---- - ---- + ------- - 9 Sqrt[q] + 9 q - 8 q +
5/2 3/2 Sqrt[q]
q q
7/2 9/2 11/2
6 q - 3 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 5]][q] |
Out[12]= | -12 -10 4 2 2 2 4 6 8 12 14
4 + q + q + -- + -- + -- - q + q - 3 q - q - 2 q + 2 q -
6 4 2
q q q
18
q |
In[13]:= | Kauffman[Link[9, Alternating, 5]][a, z] |
Out[13]= | 3
2 5 2 1 2 a z 6 z 3
3 + -- + -- - a - ---- - --- + -- - -- + --- + 2 a z - 3 a z -
4 2 3 a z z 5 a
a a a z a
2 2 2 3 3 3
2 z 5 z 19 z 3 z 2 z 7 z 3 3 3
13 z + -- - ---- - ----- + ---- + ---- - ---- - 3 a z + 3 a z +
6 4 2 5 3 a
a a a a a
4 4 4 5 5 5
4 z 7 z 24 z 2 4 3 z 2 z 11 z 5
19 z - -- + ---- + ----- + 3 a z - ---- + ---- + ----- + 5 a z -
6 4 2 5 3 a
a a a a a
6 6 7 7 8
3 5 6 5 z 10 z 2 6 4 z 7 z 7 8 z
a z - 7 z - ---- - ----- - 2 a z - ---- - ---- - 3 a z - z - --
4 2 3 a 2
a a a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 5]], Vassiliev[3][Link[9, Alternating, 5]]} |
Out[14]= | 53
{0, -(--)}
24 |
In[15]:= | Kh[Link[9, Alternating, 5]][q, t] |
Out[15]= | 2 1 1 2 4 2 4 3 2
6 + 4 q + ----- + ----- + ----- + ----- + ----- + - + ---- + 4 q t +
8 4 6 4 6 3 4 2 2 2 t 2
q t q t q t q t q t q t
4 4 2 6 2 6 3 8 3 8 4 10 4
5 q t + 4 q t + 4 q t + 2 q t + 4 q t + q t + 2 q t +
12 5
q t |