In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[7, Alternating, 4]] |
Out[2]= | 7 |
In[3]:= | PD[Link[7, Alternating, 4]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[14, 8, 5, 7], X[12, 10, 13, 9],
X[8, 14, 9, 13], X[2, 5, 3, 6], X[4, 12, 1, 11]] |
In[4]:= | GaussCode[Link[7, Alternating, 4]] |
Out[4]= | GaussCode[{1, -6, 2, -7}, {6, -1, 3, -5, 4, -2, 7, -4, 5, -3}] |
In[5]:= | BR[Link[7, Alternating, 4]] |
Out[5]= | BR[Link[7, Alternating, 4]] |
In[6]:= | alex = Alexander[Link[7, Alternating, 4]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[7, Alternating, 4]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[7, Alternating, 4]], KnotSignature[Link[7, Alternating, 4]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[7, Alternating, 4]][q] |
Out[10]= | -(3/2) 1 3/2 5/2 7/2 9/2
-q + ------- - 3 Sqrt[q] + 3 q - 3 q + 2 q - 2 q +
Sqrt[q]
11/2
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[7, Alternating, 4]][q] |
Out[12]= | -6 -4 -2 2 4 10 14 18
3 + q + q + q + q + q + q + q - q |
In[13]:= | Kauffman[Link[7, Alternating, 4]][a, z] |
Out[13]= | 2 2 3 3
1 a 2 z 2 z 2 z 2 z 2 z 5 z 5 z
1 - --- - - - --- - --- + --- + 2 a z + ---- - ---- + ---- + ---- -
a z z 5 3 a 6 2 5 3
a a a a a a
3 4 4 4 5 5 5 6 6
z 3 4 z z z 2 z 3 z z z z
-- - a z - z - -- + -- + -- - ---- - ---- - -- - -- - --
a 6 4 2 5 3 a 4 2
a a a a a a a |
In[14]:= | {Vassiliev[2][Link[7, Alternating, 4]], Vassiliev[3][Link[7, Alternating, 4]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Link[7, Alternating, 4]][q, t] |
Out[15]= | 2 1 1 2 4 4 2 6 2 6 3
3 + 2 q + ----- + - + 2 q t + q t + q t + 2 q t + q t +
4 2 t
q t
8 3 8 4 10 4 12 5
q t + q t + q t + q t |