In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 11]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 11]] |
Out[3]= | PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[14, 5, 15, 6],
X[16, 11, 7, 12], X[12, 15, 13, 16], X[6, 7, 1, 8], X[4, 13, 5, 14]] |
In[4]:= | GaussCode[Link[8, Alternating, 11]] |
Out[4]= | GaussCode[{1, -2, 3, -8, 4, -7}, {7, -1, 2, -3, 5, -6, 8, -4, 6, -5}] |
In[5]:= | BR[Link[8, Alternating, 11]] |
Out[5]= | BR[Link[8, Alternating, 11]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 11]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 11]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 11]], KnotSignature[Link[8, Alternating, 11]]} |
Out[9]= | {Infinity, -5} |
In[10]:= | J=Jones[Link[8, Alternating, 11]][q] |
Out[10]= | -(21/2) 2 3 4 4 3 3 -(7/2)
-q + ----- - ----- + ----- - ----- + ----- - ---- + q -
19/2 17/2 15/2 13/2 11/2 9/2
q q q q q q
-(5/2)
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 11]][q] |
Out[12]= | -32 -24 -22 2 2 -14 2 -8
q - q + q + --- + --- + q + --- + q
18 16 12
q q q |
In[13]:= | Kauffman[Link[8, Alternating, 11]][a, z] |
Out[13]= | 5 7
6 a a 5 7 9 13 6 2 8 2
-a + -- + -- - 4 a z - a z + 2 a z + a z + a z - 4 a z -
z z
10 2 12 2 5 3 9 3 11 3 13 3 6 4
3 a z + 2 a z + 4 a z - 2 a z + a z - a z + 2 a z +
8 4 10 4 12 4 5 5 7 5 9 5 11 5
7 a z + 3 a z - 2 a z - a z + 2 a z + a z - 2 a z -
6 6 8 6 10 6 7 7 9 7
a z - 3 a z - 2 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 11]], Vassiliev[3][Link[8, Alternating, 11]]} |
Out[14]= | 193
{0, -(---)}
16 |
In[15]:= | Kh[Link[8, Alternating, 11]][q, t] |
Out[15]= | -6 -4 1 1 1 2 2 3
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
22 8 20 7 18 7 18 6 16 6 16 5
q t q t q t q t q t q t
1 1 3 2 1 1 2 1
------ + ------ + ------ + ------ + ------ + ------ + ----- + ----
14 5 14 4 12 4 12 3 10 3 10 2 8 2 6
q t q t q t q t q t q t q t q t |