In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 6]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 6]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[16, 11, 17, 12], X[14, 7, 15, 8],
X[8, 15, 9, 16], X[18, 13, 5, 14], X[12, 17, 13, 18], X[2, 5, 3, 6],
X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[9, Alternating, 6]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 4, -5, 9, -2, 3, -7, 6, -4, 5, -3, 7,
-6}] |
In[5]:= | BR[Link[9, Alternating, 6]] |
Out[5]= | BR[Link[9, Alternating, 6]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 6]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 6]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 6]], KnotSignature[Link[9, Alternating, 6]]} |
Out[9]= | {Infinity, -5} |
In[10]:= | J=Jones[Link[9, Alternating, 6]][q] |
Out[10]= | -(23/2) 2 5 7 7 8 6 5
q - ----- + ----- - ----- + ----- - ----- + ----- - ---- +
21/2 19/2 17/2 15/2 13/2 11/2 9/2
q q q q q q q
2 -(5/2)
---- - q
7/2
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 6]][q] |
Out[12]= | -36 2 -32 3 2 2 5 -20 3 -16 2
-q - --- - q - --- + --- + --- + --- + q + --- + q + --- -
34 30 26 24 22 18 12
q q q q q q q
-10 -8
q + q |
In[13]:= | Kauffman[Link[9, Alternating, 6]][a, z] |
Out[13]= | 7 9 11
8 10 14 3 a 5 a 2 a 5 7 9
5 a + 5 a - a - ---- - ---- - ----- - 2 a z + 9 a z + 17 a z +
z z z
11 6 2 8 2 10 2 12 2 14 2
6 a z - a z - 13 a z - 15 a z - a z + 2 a z +
5 3 7 3 9 3 11 3 13 3 6 4
3 a z - 10 a z - 21 a z - 6 a z + 2 a z + 4 a z +
8 4 10 4 12 4 14 4 5 5 7 5
14 a z + 14 a z + 3 a z - a z - a z + 8 a z +
9 5 11 5 13 5 6 6 8 6 10 6
15 a z + 4 a z - 2 a z - 2 a z - 4 a z - 5 a z -
12 6 7 7 9 7 11 7 8 8 10 8
3 a z - 3 a z - 6 a z - 3 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 6]], Vassiliev[3][Link[9, Alternating, 6]]} |
Out[14]= | 379
{0, ---}
24 |
In[15]:= | Kh[Link[9, Alternating, 6]][q, t] |
Out[15]= | -6 -4 1 1 1 4 1 3
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
24 9 22 8 20 8 20 7 18 7 18 6
q t q t q t q t q t q t
4 4 3 4 5 3 3
------ + ------ + ------ + ------ + ------ + ------ + ------ +
16 6 16 5 14 5 14 4 12 4 12 3 10 3
q t q t q t q t q t q t q t
2 3 2
------ + ----- + ----
10 2 8 2 6
q t q t q t |