L7n1

From Knot Atlas
Revision as of 20:14, 28 August 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L7a7.gif

L7a7

L7n2.gif

L7n2

L7n1.gif Visit L7n1's page at Knotilus!

Visit L7n1's page at the original Knot Atlas!

L7n1 is in the Rolfsen table of links.


L7n1 Further Notes and Views

Knot presentations

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X5,10,6,11 X3849 X9,14,10,5 X11,2,12,3
Gauss code {1, 7, -5, -3}, {-4, -1, 2, 5, -6, 4, -7, -2, 3, 6}

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -5 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Vassiliev invariants

V2 and V3: (0, )
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:L7n1/V 2,1 Data:L7n1/V 3,1 Data:L7n1/V 4,1 Data:L7n1/V 4,2 Data:L7n1/V 4,3 Data:L7n1/V 5,1 Data:L7n1/V 5,2 Data:L7n1/V 5,3 Data:L7n1/V 5,4 Data:L7n1/V 6,1 Data:L7n1/V 6,2 Data:L7n1/V 6,3 Data:L7n1/V 6,4 Data:L7n1/V 6,5 Data:L7n1/V 6,6 Data:L7n1/V 6,7 Data:L7n1/V 6,8 Data:L7n1/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -5 is the signature of L7n1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10χ
-4     11
-6     11
-8   1  1
-10 1    1
-12 21   1
-14      0
-161     -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Link[7, NonAlternating, 1]]
Out[2]=  
7
In[3]:=
PD[Link[7, NonAlternating, 1]]
Out[3]=  
PD[X[6, 1, 7, 2], X[12, 7, 13, 8], X[4, 13, 1, 14], X[5, 10, 6, 11], 
  X[3, 8, 4, 9], X[9, 14, 10, 5], X[11, 2, 12, 3]]
In[4]:=
GaussCode[Link[7, NonAlternating, 1]]
Out[4]=  
GaussCode[{1, 7, -5, -3}, {-4, -1, 2, 5, -6, 4, -7, -2, 3, 6}]
In[5]:=
BR[Link[7, NonAlternating, 1]]
Out[5]=  
BR[Link[7, NonAlternating, 1]]
In[6]:=
alex = Alexander[Link[7, NonAlternating, 1]][t]
Out[6]=  
ComplexInfinity
In[7]:=
Conway[Link[7, NonAlternating, 1]][z]
Out[7]=  
ComplexInfinity
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[Link[7, NonAlternating, 1]], KnotSignature[Link[7, NonAlternating, 1]]}
Out[9]=  
{Infinity, -5}
In[10]:=
J=Jones[Link[7, NonAlternating, 1]][q]
Out[10]=  
 -(15/2)    -(13/2)    -(9/2)    -(5/2)
q        - q        - q       - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[Link[7, NonAlternating, 1]][q]
Out[12]=  
  -28    -26    -24    -20    2     3     2     2     -10    -8

-q - q - q + q + --- + --- + --- + --- + q + q

                             18    16    14    12
q q q q
In[13]:=
Kauffman[Link[7, NonAlternating, 1]][a, z]
Out[13]=  
                        5      7    9
   6      8    10   2 a    3 a    a       5        7      9

-3 a - 3 a - a + ---- + ---- + -- - 6 a z - 7 a z - a z +

                     z      z     z

    6  2      8  2      5  3      7  3    6  4    8  4    5  5    7  5
4 a z + 4 a z + 5 a z + 5 a z - a z - a z - a z - a z
In[14]:=
{Vassiliev[2][Link[7, NonAlternating, 1]], Vassiliev[3][Link[7, NonAlternating, 1]]}
Out[14]=  
    31

{0, --}

24
In[15]:=
Kh[Link[7, NonAlternating, 1]][q, t]
Out[15]=  
 -6    -4     1        2        1        1        1

q + q + ------ + ------ + ------ + ------ + -----

            16  5    12  4    10  4    12  3    8  2
q t q t q t q t q t