In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[7, NonAlternating, 1]] |
Out[2]= | 7 |
In[3]:= | PD[Link[7, NonAlternating, 1]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 7, 13, 8], X[4, 13, 1, 14], X[5, 10, 6, 11],
X[3, 8, 4, 9], X[9, 14, 10, 5], X[11, 2, 12, 3]] |
In[4]:= | GaussCode[Link[7, NonAlternating, 1]] |
Out[4]= | GaussCode[{1, 7, -5, -3}, {-4, -1, 2, 5, -6, 4, -7, -2, 3, 6}] |
In[5]:= | BR[Link[7, NonAlternating, 1]] |
Out[5]= | BR[Link[7, NonAlternating, 1]] |
In[6]:= | alex = Alexander[Link[7, NonAlternating, 1]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[7, NonAlternating, 1]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[7, NonAlternating, 1]], KnotSignature[Link[7, NonAlternating, 1]]} |
Out[9]= | {Infinity, -5} |
In[10]:= | J=Jones[Link[7, NonAlternating, 1]][q] |
Out[10]= | -(15/2) -(13/2) -(9/2) -(5/2)
q - q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[7, NonAlternating, 1]][q] |
Out[12]= | -28 -26 -24 -20 2 3 2 2 -10 -8
-q - q - q + q + --- + --- + --- + --- + q + q
18 16 14 12
q q q q |
In[13]:= | Kauffman[Link[7, NonAlternating, 1]][a, z] |
Out[13]= | 5 7 9
6 8 10 2 a 3 a a 5 7 9
-3 a - 3 a - a + ---- + ---- + -- - 6 a z - 7 a z - a z +
z z z
6 2 8 2 5 3 7 3 6 4 8 4 5 5 7 5
4 a z + 4 a z + 5 a z + 5 a z - a z - a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[7, NonAlternating, 1]], Vassiliev[3][Link[7, NonAlternating, 1]]} |
Out[14]= | 31
{0, --}
24 |
In[15]:= | Kh[Link[7, NonAlternating, 1]][q, t] |
Out[15]= | -6 -4 1 2 1 1 1
q + q + ------ + ------ + ------ + ------ + -----
16 5 12 4 10 4 12 3 8 2
q t q t q t q t q t |