In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 37]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 37]] |
Out[3]= | PD[X[10, 1, 11, 2], X[12, 4, 13, 3], X[18, 12, 9, 11], X[2, 9, 3, 10],
X[4, 18, 5, 17], X[16, 8, 17, 7], X[14, 6, 15, 5], X[6, 16, 7, 15],
X[8, 14, 1, 13]] |
In[4]:= | GaussCode[Link[9, Alternating, 37]] |
Out[4]= | GaussCode[{1, -4, 2, -5, 7, -8, 6, -9},
{4, -1, 3, -2, 9, -7, 8, -6, 5, -3}] |
In[5]:= | BR[Link[9, Alternating, 37]] |
Out[5]= | BR[Link[9, Alternating, 37]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 37]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 37]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 37]], KnotSignature[Link[9, Alternating, 37]]} |
Out[9]= | {Infinity, 3} |
In[10]:= | J=Jones[Link[9, Alternating, 37]][q] |
Out[10]= | 1 3/2 5/2 7/2 9/2 11/2
-(-------) + 2 Sqrt[q] - 4 q + 6 q - 8 q + 7 q - 7 q +
Sqrt[q]
13/2 15/2 17/2
5 q - 3 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 37]][q] |
Out[12]= | -2 4 6 8 10 12 14 18 20 24 26
q + q - 2 q + 2 q + q + 2 q + 3 q + 2 q - q + q - q |
In[13]:= | Kauffman[Link[9, Alternating, 37]][a, z] |
Out[13]= | 2 2 2 2
-4 1 1 z 5 z 2 z 2 z z z 3 z 4 z
a - ---- - ---- - -- + --- + --- - --- + --- - -- - ---- - ---- -
5 3 9 5 3 a 10 8 6 4
a z a z a a a a a a a
2 3 3 3 3 4 4 4 4 4
3 z 4 z 8 z z 3 z z 5 z 7 z 6 z 5 z
---- + ---- - ---- - -- + ---- - --- + ---- + ---- + ---- + ---- -
2 9 5 3 a 10 8 6 4 2
a a a a a a a a a
5 5 5 5 5 6 6 6 6 7
3 z 2 z 9 z 3 z z 4 z 4 z 2 z 2 z 3 z
---- + ---- + ---- + ---- - -- - ---- - ---- - ---- - ---- - ---- -
9 7 5 3 a 8 6 4 2 7
a a a a a a a a a
7 7 8 8
5 z 2 z z z
---- - ---- - -- - --
5 3 6 4
a a a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 37]], Vassiliev[3][Link[9, Alternating, 37]]} |
Out[14]= | 41
{0, --}
24 |
In[15]:= | Kh[Link[9, Alternating, 37]][q, t] |
Out[15]= | 2
2 4 1 1 q 4 6 6 2 8 2
3 q + 2 q + ----- + - + -- + 4 q t + 2 q t + 4 q t + 4 q t +
2 2 t t
q t
8 3 10 3 10 4 12 4 12 5 14 5
3 q t + 4 q t + 4 q t + 4 q t + 2 q t + 3 q t +
14 6 16 6 18 7
q t + 2 q t + q t |