In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, NonAlternating, 3]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, NonAlternating, 3]] |
Out[3]= | PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[13, 2, 14, 3],
X[14, 7, 15, 8], X[9, 16, 10, 11], X[11, 10, 12, 5], X[4, 15, 1, 16]] |
In[4]:= | GaussCode[Link[8, NonAlternating, 3]] |
Out[4]= | GaussCode[{1, 4, -3, -8}, {-2, -1, 5, 3, -6, 7}, {-7, 2, -4, -5, 8, 6}] |
In[5]:= | BR[Link[8, NonAlternating, 3]] |
Out[5]= | BR[Link[8, NonAlternating, 3]] |
In[6]:= | alex = Alexander[Link[8, NonAlternating, 3]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, NonAlternating, 3]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, NonAlternating, 3]], KnotSignature[Link[8, NonAlternating, 3]]} |
Out[9]= | {Infinity, -6} |
In[10]:= | J=Jones[Link[8, NonAlternating, 3]][q] |
Out[10]= | -9 -7 -5 -3
q + q + q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, NonAlternating, 3]][q] |
Out[12]= | -32 -30 2 3 4 4 3 3 2 2 -12
q + q + --- + --- + --- + --- + --- + --- + --- + --- + q +
28 26 24 22 20 18 16 14
q q q q q q q q
-10
q |
In[13]:= | Kauffman[Link[8, NonAlternating, 3]][a, z] |
Out[13]= | 6 8 10 7 9
6 8 10 12 a 2 a a 2 a 2 a 7
-5 a - 8 a - 3 a + a + -- + ---- + --- - ---- - ---- + 6 a z +
2 2 2 z z
z z z
9 6 2 8 2 10 2 7 3 9 3 6 4
6 a z + 10 a z + 11 a z + a z - 5 a z - 5 a z - 6 a z -
8 4 7 5 9 5 6 6 8 6
6 a z + a z + a z + a z + a z |
In[14]:= | {Vassiliev[2][Link[8, NonAlternating, 3]], Vassiliev[3][Link[8, NonAlternating, 3]]} |
Out[14]= | 100
{0, ---}
3 |
In[15]:= | Kh[Link[8, NonAlternating, 3]][q, t] |
Out[15]= | -7 -5 1 2 1 1 2 1
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
19 6 17 6 15 6 17 5 13 4 11 4
q t q t q t q t q t q t
1 1
------ + -----
13 3 9 2
q t q t |