In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[7, Alternating, 5]] |
Out[2]= | 7 |
In[3]:= | PD[Link[7, Alternating, 5]] |
Out[3]= | PD[X[8, 1, 9, 2], X[10, 3, 11, 4], X[12, 6, 13, 5], X[14, 11, 7, 12],
X[4, 14, 5, 13], X[2, 7, 3, 8], X[6, 9, 1, 10]] |
In[4]:= | GaussCode[Link[7, Alternating, 5]] |
Out[4]= | GaussCode[{1, -6, 2, -5, 3, -7}, {6, -1, 7, -2, 4, -3, 5, -4}] |
In[5]:= | BR[Link[7, Alternating, 5]] |
Out[5]= | BR[Link[7, Alternating, 5]] |
In[6]:= | alex = Alexander[Link[7, Alternating, 5]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[7, Alternating, 5]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[7, Alternating, 5]], KnotSignature[Link[7, Alternating, 5]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[7, Alternating, 5]][q] |
Out[10]= | -(11/2) 2 2 4 3 3 3/2
q - ---- + ---- - ---- + ---- - ------- + 2 Sqrt[q] - q
9/2 7/2 5/2 3/2 Sqrt[q]
q q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[7, Alternating, 5]][q] |
Out[12]= | -18 -14 2 2 2 2 2 6
1 - q + q + --- + -- + -- + -- - q + q
10 8 6 4
q q q q |
In[13]:= | Kauffman[Link[7, Alternating, 5]][a, z] |
Out[13]= | 3
2 a a z 3 5 2 2 2 4 2
-a + - + -- + - - 2 a z - 6 a z - 3 a z + 2 z + 2 a z + 2 a z +
z z a
3
6 2 z 3 3 3 5 3 4 2 4 6 4
2 a z - -- + 2 a z + 8 a z + 5 a z - 2 z - a z - a z -
a
5 3 5 5 5 2 6 4 6
2 a z - 4 a z - 2 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[7, Alternating, 5]], Vassiliev[3][Link[7, Alternating, 5]]} |
Out[14]= | 31
{0, --}
48 |
In[15]:= | Kh[Link[7, Alternating, 5]][q, t] |
Out[15]= | 2 1 1 1 1 1 3 2
2 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
2 12 5 10 4 8 4 8 3 6 3 6 2 4 2
q q t q t q t q t q t q t q t
1 2 2 4 2
---- + ---- + t + q t + q t
4 2
q t q t |