L7a5

From Knot Atlas
Revision as of 20:15, 28 August 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L7a4.gif

L7a4

L7a6.gif

L7a6

L7a5.gif Visit L7a5's page at Knotilus!

Visit L7a5's page at the original Knot Atlas!

L7a5 is in the Rolfsen table of links.


L7a5 Further Notes and Views

Knot presentations

Planar diagram presentation X8192 X10,3,11,4 X12,6,13,5 X14,11,7,12 X4,14,5,13 X2738 X6,9,1,10
Gauss code {1, -6, 2, -5, 3, -7}, {6, -1, 7, -2, 4, -3, 5, -4}

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Vassiliev invariants

V2 and V3: (0, )
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:L7a5/V 2,1 Data:L7a5/V 3,1 Data:L7a5/V 4,1 Data:L7a5/V 4,2 Data:L7a5/V 4,3 Data:L7a5/V 5,1 Data:L7a5/V 5,2 Data:L7a5/V 5,3 Data:L7a5/V 5,4 Data:L7a5/V 6,1 Data:L7a5/V 6,2 Data:L7a5/V 6,3 Data:L7a5/V 6,4 Data:L7a5/V 6,5 Data:L7a5/V 6,6 Data:L7a5/V 6,7 Data:L7a5/V 6,8 Data:L7a5/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -1 is the signature of L7a5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012χ
4       11
2      1 -1
0     21 1
-2    22  0
-4   21   1
-6  13    2
-8 11     0
-10 1      1
-121       -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Link[7, Alternating, 5]]
Out[2]=  
7
In[3]:=
PD[Link[7, Alternating, 5]]
Out[3]=  
PD[X[8, 1, 9, 2], X[10, 3, 11, 4], X[12, 6, 13, 5], X[14, 11, 7, 12], 
  X[4, 14, 5, 13], X[2, 7, 3, 8], X[6, 9, 1, 10]]
In[4]:=
GaussCode[Link[7, Alternating, 5]]
Out[4]=  
GaussCode[{1, -6, 2, -5, 3, -7}, {6, -1, 7, -2, 4, -3, 5, -4}]
In[5]:=
BR[Link[7, Alternating, 5]]
Out[5]=  
BR[Link[7, Alternating, 5]]
In[6]:=
alex = Alexander[Link[7, Alternating, 5]][t]
Out[6]=  
ComplexInfinity
In[7]:=
Conway[Link[7, Alternating, 5]][z]
Out[7]=  
ComplexInfinity
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[Link[7, Alternating, 5]], KnotSignature[Link[7, Alternating, 5]]}
Out[9]=  
{Infinity, -1}
In[10]:=
J=Jones[Link[7, Alternating, 5]][q]
Out[10]=  
 -(11/2)    2      2      4      3        3                   3/2

q - ---- + ---- - ---- + ---- - ------- + 2 Sqrt[q] - q

           9/2    7/2    5/2    3/2   Sqrt[q]
q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[Link[7, Alternating, 5]][q]
Out[12]=  
     -18    -14    2    2    2    2     2    6

1 - q + q + --- + -- + -- + -- - q + q

                  10    8    6    4
q q q q
In[13]:=
Kauffman[Link[7, Alternating, 5]][a, z]
Out[13]=  
           3
 2   a   a    z              3        5        2      2  2      4  2

-a + - + -- + - - 2 a z - 6 a z - 3 a z + 2 z + 2 a z + 2 a z +

     z   z    a

            3
    6  2   z         3      3  3      5  3      4    2  4    6  4
 2 a  z  - -- + 2 a z  + 8 a  z  + 5 a  z  - 2 z  - a  z  - a  z  - 
           a

      5      3  5      5  5    2  6    4  6
2 a z - 4 a z - 2 a z - a z - a z
In[14]:=
{Vassiliev[2][Link[7, Alternating, 5]], Vassiliev[3][Link[7, Alternating, 5]]}
Out[14]=  
    31

{0, --}

48
In[15]:=
Kh[Link[7, Alternating, 5]][q, t]
Out[15]=  
    2      1        1        1       1       1       3       2

2 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- +

    2    12  5    10  4    8  4    8  3    6  3    6  2    4  2
   q    q   t    q   t    q  t    q  t    q  t    q  t    q  t

  1      2          2      4  2
 ---- + ---- + t + q  t + q  t
  4      2
q t q t