In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 26]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 26]] |
Out[3]= | PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[18, 10, 7, 9], X[14, 6, 15, 5],
X[16, 14, 17, 13], X[12, 18, 13, 17], X[2, 7, 3, 8], X[4, 12, 5, 11],
X[6, 16, 1, 15]] |
In[4]:= | GaussCode[Link[9, Alternating, 26]] |
Out[4]= | GaussCode[{1, -7, 2, -8, 4, -9},
{7, -1, 3, -2, 8, -6, 5, -4, 9, -5, 6, -3}] |
In[5]:= | BR[Link[9, Alternating, 26]] |
Out[5]= | BR[Link[9, Alternating, 26]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 26]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 26]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 26]], KnotSignature[Link[9, Alternating, 26]]} |
Out[9]= | {Infinity, 3} |
In[10]:= | J=Jones[Link[9, Alternating, 26]][q] |
Out[10]= | 1 3/2 5/2 7/2 9/2 11/2
-(-------) + 2 Sqrt[q] - 5 q + 6 q - 8 q + 8 q - 7 q +
Sqrt[q]
13/2 15/2 17/2
5 q - 3 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 26]][q] |
Out[12]= | -2 2 4 8 14 16 18 20 24 26
q + q + 3 q + 3 q + q - q + 2 q - q + q - q |
In[13]:= | Kauffman[Link[9, Alternating, 26]][a, z] |
Out[13]= | 2 2 2
-2 1 1 z z z 4 z 3 z z 2 z 4 z
-a + ---- + --- - -- - -- - -- - --- - --- + --- - ---- - ---- -
3 a z 9 7 5 3 a 10 8 6
a z a a a a a a a
2 2 3 3 3 3 4 4 4 4
2 z z 4 z 2 z 5 z 3 z z 5 z 9 z 7 z
---- - -- + ---- + ---- + ---- + ---- - --- + ---- + ---- + ---- +
4 2 9 7 3 a 10 8 6 4
a a a a a a a a a
4 5 5 5 5 5 6 6 6 6
4 z 3 z z 6 z z z 4 z 5 z 3 z 2 z
---- - ---- + -- + ---- + -- - -- - ---- - ---- - ---- - ---- -
2 9 7 5 3 a 8 6 4 2
a a a a a a a a a
7 7 7 8 8
3 z 5 z 2 z z z
---- - ---- - ---- - -- - --
7 5 3 6 4
a a a a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 26]], Vassiliev[3][Link[9, Alternating, 26]]} |
Out[14]= | 31
{0, -(--)}
48 |
In[15]:= | Kh[Link[9, Alternating, 26]][q, t] |
Out[15]= | 2
2 4 1 1 q 4 6 6 2 8 2
4 q + 2 q + ----- + - + -- + 3 q t + 3 q t + 5 q t + 4 q t +
2 2 t t
q t
8 3 10 3 10 4 12 4 12 5 14 5
4 q t + 4 q t + 3 q t + 4 q t + 2 q t + 3 q t +
14 6 16 6 18 7
q t + 2 q t + q t |