In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 39]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 39]] |
Out[3]= | PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[14, 5, 15, 6],
X[6, 9, 7, 10], X[16, 8, 17, 7], X[18, 16, 9, 15], X[8, 18, 1, 17],
X[4, 13, 5, 14]] |
In[4]:= | GaussCode[Link[9, Alternating, 39]] |
Out[4]= | GaussCode[{1, -2, 3, -9, 4, -5, 6, -8},
{5, -1, 2, -3, 9, -4, 7, -6, 8, -7}] |
In[5]:= | BR[Link[9, Alternating, 39]] |
Out[5]= | BR[Link[9, Alternating, 39]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 39]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 39]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 39]], KnotSignature[Link[9, Alternating, 39]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[9, Alternating, 39]][q] |
Out[10]= | -(15/2) 2 3 4 5 4 4 2
-q + ----- - ----- + ---- - ---- + ---- - ---- + ------- -
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q
3/2
2 Sqrt[q] + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 39]][q] |
Out[12]= | -22 -18 -12 3 -6 2 -2 4
q + q + q + -- + q + -- + q - q
8 4
q q |
In[13]:= | Kauffman[Link[9, Alternating, 39]][a, z] |
Out[13]= | 3 5
4 a a 3 5 9 2 2 2
a - -- - -- + 4 a z + 10 a z + 5 a z + a z - 3 z - 4 a z -
z z
4 2 6 2 8 2 3 3 3 5 3 7 3
4 a z - a z + 2 a z - 11 a z - 20 a z - 7 a z + a z -
9 3 4 2 4 4 4 6 4 8 4 5
a z + 4 z + 3 a z + 3 a z + 2 a z - 2 a z + 9 a z +
3 5 5 5 7 5 6 2 6 4 6 6 6
16 a z + 5 a z - 2 a z - z + 2 a z + a z - 2 a z -
7 3 7 5 7 2 8 4 8
2 a z - 4 a z - 2 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 39]], Vassiliev[3][Link[9, Alternating, 39]]} |
Out[14]= | 113
{0, -(---)}
24 |
In[15]:= | Kh[Link[9, Alternating, 39]][q, t] |
Out[15]= | 2 3 1 1 1 2 2 3 1
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- +
4 2 16 6 14 5 12 5 12 4 10 4 10 3 8 3
q q q t q t q t q t q t q t q t
2 3 2 2 t 2 2 2 4 3
----- + ----- + ---- + ---- + t + -- + t + q t + q t
8 2 6 2 6 4 2
q t q t q t q t q |