In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 25]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 25]] |
Out[3]= | PD[X[8, 1, 9, 2], X[10, 3, 11, 4], X[14, 6, 15, 5], X[18, 11, 7, 12],
X[16, 13, 17, 14], X[12, 17, 13, 18], X[4, 16, 5, 15], X[2, 7, 3, 8],
X[6, 9, 1, 10]] |
In[4]:= | GaussCode[Link[9, Alternating, 25]] |
Out[4]= | GaussCode[{1, -8, 2, -7, 3, -9},
{8, -1, 9, -2, 4, -6, 5, -3, 7, -5, 6, -4}] |
In[5]:= | BR[Link[9, Alternating, 25]] |
Out[5]= | BR[Link[9, Alternating, 25]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 25]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 25]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 25]], KnotSignature[Link[9, Alternating, 25]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[9, Alternating, 25]][q] |
Out[10]= | -(15/2) 2 3 5 5 6 5 4
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- +
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q
3/2
2 Sqrt[q] - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 25]][q] |
Out[12]= | -24 -20 -18 -16 -14 2 -8 2 -4 2 6
2 - q + q - q + q + q + --- + q + -- + q - q + q
10 6
q q |
In[13]:= | Kauffman[Link[9, Alternating, 25]][a, z] |
Out[13]= | 3
2 a a z 3 5 7 2 2 2
-a + - + -- + - - 3 a z - 5 a z + 2 a z + 3 a z + z - a z -
z z a
3
4 2 6 2 8 2 z 3 3 3 5 3
a z - 3 a z - 4 a z - -- + 3 a z + 6 a z - 7 a z -
a
7 3 4 2 4 4 4 6 4 8 4 5
9 a z - 2 z + 3 a z + 5 a z + 4 a z + 4 a z - 3 a z +
5 5 7 5 2 6 4 6 6 6 8 6 3 7
11 a z + 8 a z - 3 a z - a z + a z - a z - 2 a z -
5 7 7 7 4 8 6 8
4 a z - 2 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 25]], Vassiliev[3][Link[9, Alternating, 25]]} |
Out[14]= | 79
{0, --}
48 |
In[15]:= | Kh[Link[9, Alternating, 25]][q, t] |
Out[15]= | 2 1 1 1 2 1 3 2
3 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- +
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4
q q t q t q t q t q t q t q t
2 3 4 3 2 3 2 4 2
----- + ----- + ----- + ----- + ---- + ---- + t + q t + q t
8 3 6 3 6 2 4 2 4 2
q t q t q t q t q t q t |