In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 51]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 17, 10, 16], X[5, 15, 6, 14],
X[15, 7, 16, 6], X[13, 1, 14, 20], X[19, 11, 20, 10],
X[11, 19, 12, 18], X[17, 13, 18, 12], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 51]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -3, 7, -8, 9, -6, 4, -5, 3, -9,
8, -7, 6] |
In[4]:= | DTCode[Knot[10, 51]] |
Out[4]= | DTCode[4, 8, 14, 2, 16, 18, 20, 6, 12, 10] |
In[5]:= | br = BR[Knot[10, 51]] |
Out[5]= | BR[4, {1, 1, 2, -1, 2, 2, -3, 2, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 51]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 51]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 51]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, {2, 3}, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 51]][t] |
Out[10]= | 2 7 15 2 3
-19 + -- - -- + -- + 15 t - 7 t + 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 51]][z] |
Out[11]= | 2 4 6
1 + 5 z + 5 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 51]} |
In[13]:= | {KnotDet[Knot[10, 51]], KnotSignature[Knot[10, 51]]} |
Out[13]= | {67, 2} |
In[14]:= | Jones[Knot[10, 51]][q] |
Out[14]= | -2 3 2 3 4 5 6 7 8
-6 - q + - + 9 q - 10 q + 12 q - 10 q + 8 q - 5 q + 2 q - q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 51]} |
In[16]:= | A2Invariant[Knot[10, 51]][q] |
Out[16]= | -6 -4 -2 2 4 6 8 10 12 14
-1 - q + q - q + 2 q - 2 q + 3 q + q + 2 q + 3 q - q +
16 18 20 24
2 q - 2 q - 2 q - q |
In[17]:= | HOMFLYPT[Knot[10, 51]][a, z] |
Out[17]= | 2 2 2 4 4
3 4 -2 2 3 z 7 z 3 z 4 z 4 z
-1 - -- + -- + a - 2 z - ---- + ---- + ---- - z - -- + ---- +
6 4 6 4 2 6 4
a a a a a a a
4 6 6
3 z z z
---- + -- + --
2 4 2
a a a |
In[18]:= | Kauffman[Knot[10, 51]][a, z] |
Out[18]= | 2 2
3 4 -2 2 z 3 z 9 z 5 z 2 z 8 z
-1 + -- + -- - a + --- - --- - --- - --- + a z + 3 z + -- - ---- -
6 4 9 7 5 3 8 6
a a a a a a a a
2 2 3 3 3 3 4
8 z 4 z 3 z 5 z 21 z 15 z 3 4 4 z
---- + ---- - ---- + ---- + ----- + ----- - 2 a z - 6 z - ---- +
4 2 9 7 5 3 8
a a a a a a a
4 4 4 5 5 5 5 5
9 z 13 z 6 z z 6 z 16 z 16 z 6 z 5
---- + ----- - ---- + -- - ---- - ----- - ----- - ---- + a z +
6 4 2 9 7 5 3 a
a a a a a a a
6 6 6 6 7 7 7 7 8
6 2 z 6 z 12 z z 3 z 5 z 6 z 4 z 3 z
3 z + ---- - ---- - ----- - -- + ---- + ---- + ---- + ---- + ---- +
8 6 4 2 7 5 3 a 6
a a a a a a a a
8 8 9 9
6 z 3 z z z
---- + ---- + -- + --
4 2 5 3
a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 51]], Vassiliev[3][Knot[10, 51]]} |
Out[19]= | {5, 8} |
In[20]:= | Kh[Knot[10, 51]][q, t] |
Out[20]= | 3 1 2 1 4 2 q 3 5
5 q + 5 q + ----- + ----- + ---- + --- + --- + 6 q t + 4 q t +
5 3 3 2 2 q t t
q t q t q t
5 2 7 2 7 3 9 3 9 4 11 4 11 5
6 q t + 6 q t + 4 q t + 6 q t + 4 q t + 4 q t + q t +
13 5 13 6 15 6 17 7
4 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[10, 51], 2][q] |
Out[21]= | -7 3 -5 9 16 -2 34 2 3
-37 + q - -- + q + -- - -- - q + -- - 16 q + 73 q - 52 q -
6 4 3 q
q q q
4 5 6 7 8 9 10 11
43 q + 107 q - 52 q - 67 q + 117 q - 39 q - 73 q + 95 q -
12 13 14 15 16 17 18 19
17 q - 59 q + 55 q - q - 33 q + 21 q + 3 q - 11 q +
20 21 22 23
5 q + q - 2 q + q |