8 8

From Knot Atlas
Revision as of 20:05, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

8 7.gif

8_7

8 9.gif

8_9

8 8.gif Visit 8 8's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 8's page at Knotilus!

Visit 8 8's page at the original Knot Atlas!

8 8 Quick Notes


8 8 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X9,1,10,16 X15,11,16,10 X7283
Gauss code -1, 8, -2, 1, -4, 5, -8, 2, -6, 7, -3, 4, -5, 3, -7, 6
Dowker-Thistlethwaite code 4 8 12 2 16 14 6 10
Conway Notation [2312]

Minimum Braid Representative:

BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 9, width is 4.

Braid index is 4.

A Morse Link Presentation:

8 8 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-6]
Hyperbolic Volume 7.80134
A-Polynomial See Data:8 8/A-polynomial

[edit Notes for 8 8's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 8 8's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 25, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_129, K11n39, K11n45, K11n50, K11n132, ...}

Same Jones Polynomial (up to mirroring, ): {10_129, ...}

Vassiliev invariants

V2 and V3: (2, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 8. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
11        1-1
9       1 1
7      21 -1
5     21  1
3    22   0
1   32    1
-1  13     2
-3 12      -1
-5 1       1
-71        -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials