In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[8, 8]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12],
X[13, 7, 14, 6], X[9, 1, 10, 16], X[15, 11, 16, 10], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[8, 8]] |
Out[3]= | GaussCode[-1, 8, -2, 1, -4, 5, -8, 2, -6, 7, -3, 4, -5, 3, -7, 6] |
In[4]:= | DTCode[Knot[8, 8]] |
Out[4]= | DTCode[4, 8, 12, 2, 16, 14, 6, 10] |
In[5]:= | br = BR[Knot[8, 8]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[8, 8]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[8, 8]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[8, 8]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, {4, 5}, 1} |
In[10]:= | alex = Alexander[Knot[8, 8]][t] |
Out[10]= | 2 6 2
9 + -- - - - 6 t + 2 t
2 t
t |
In[11]:= | Conway[Knot[8, 8]][z] |
Out[11]= | 2 4
1 + 2 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 8], Knot[10, 129], Knot[11, NonAlternating, 39],
Knot[11, NonAlternating, 45], Knot[11, NonAlternating, 50],
Knot[11, NonAlternating, 132]} |
In[13]:= | {KnotDet[Knot[8, 8]], KnotSignature[Knot[8, 8]]} |
Out[13]= | {25, 0} |
In[14]:= | Jones[Knot[8, 8]][q] |
Out[14]= | -3 2 3 2 3 4 5
5 - q + -- - - - 4 q + 4 q - 3 q + 2 q - q
2 q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 8], Knot[10, 129]} |
In[16]:= | A2Invariant[Knot[8, 8]][q] |
Out[16]= | -10 -4 2 2 4 8 10 16
1 - q - q + -- + 2 q + q + q - q - q
2
q |
In[17]:= | HOMFLYPT[Knot[8, 8]][a, z] |
Out[17]= | 2 2 4
-4 -2 2 2 z 2 z 2 2 4 z
2 - a + a - a + 2 z - -- + ---- - a z + z + --
4 2 2
a a a |
In[18]:= | Kauffman[Knot[8, 8]][a, z] |
Out[18]= | 2 2
-4 -2 2 2 z 3 z z 3 2 4 z 5 z
2 - a - a + a + --- + --- + - - a z - a z - z + ---- + ---- -
5 3 a 4 2
a a a a
3 3 3 4 4
2 2 3 z 5 z 3 z 3 3 4 6 z 9 z 2 4
2 a z - ---- - ---- - ---- + a z - z - ---- - ---- + 2 a z +
5 3 a 4 2
a a a a
5 5 6 6 7 7
z z 5 6 2 z 4 z z z
-- + -- + 2 a z + 2 z + ---- + ---- + -- + --
5 a 4 2 3 a
a a a a |
In[19]:= | {Vassiliev[2][Knot[8, 8]], Vassiliev[3][Knot[8, 8]]} |
Out[19]= | {2, 1} |
In[20]:= | Kh[Knot[8, 8]][q, t] |
Out[20]= | 3 1 1 1 2 1 3
- + 3 q + ----- + ----- + ----- + ---- + --- + 2 q t + 2 q t +
q 7 3 5 2 3 2 3 q t
q t q t q t q t
3 2 5 2 5 3 7 3 7 4 9 4 11 5
2 q t + 2 q t + q t + 2 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[8, 8], 2][q] |
Out[21]= | -9 2 4 7 2 10 15 3 2 3
17 + q - -- + -- - -- + -- + -- - -- + - - 20 q + 2 q + 19 q -
8 6 5 4 3 2 q
q q q q q q
4 5 6 7 8 9 10 11 12
18 q - q + 17 q - 13 q - 4 q + 12 q - 6 q - 4 q + 6 q -
13 14 15
q - 2 q + q |