In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[8, 9]] |
Out[2]= | PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[10, 3, 11, 4], X[2, 13, 3, 14],
X[12, 5, 13, 6], X[4, 11, 5, 12], X[16, 10, 1, 9], X[8, 16, 9, 15]] |
In[3]:= | GaussCode[Knot[8, 9]] |
Out[3]= | GaussCode[1, -4, 3, -6, 5, -1, 2, -8, 7, -3, 6, -5, 4, -2, 8, -7] |
In[4]:= | DTCode[Knot[8, 9]] |
Out[4]= | DTCode[6, 10, 12, 14, 16, 4, 2, 8] |
In[5]:= | br = BR[Knot[8, 9]] |
Out[5]= | BR[3, {-1, -1, -1, 2, -1, 2, 2, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[8, 9]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[8, 9]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[8, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {FullyAmphicheiral, 1, 3, 2, {3, 6}, 1} |
In[10]:= | alex = Alexander[Knot[8, 9]][t] |
Out[10]= | -3 3 5 2 3
7 - t + -- - - - 5 t + 3 t - t
2 t
t |
In[11]:= | Conway[Knot[8, 9]][z] |
Out[11]= | 2 4 6
1 - 2 z - 3 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 9], Knot[10, 155], Knot[11, NonAlternating, 37]} |
In[13]:= | {KnotDet[Knot[8, 9]], KnotSignature[Knot[8, 9]]} |
Out[13]= | {25, 0} |
In[14]:= | Jones[Knot[8, 9]][q] |
Out[14]= | -4 2 3 4 2 3 4
5 + q - -- + -- - - - 4 q + 3 q - 2 q + q
3 2 q
q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 9]} |
In[16]:= | A2Invariant[Knot[8, 9]][q] |
Out[16]= | -12 -8 -4 -2 2 4 8 12
-1 + q + q - q + q + q - q + q + q |
In[17]:= | HOMFLYPT[Knot[8, 9]][a, z] |
Out[17]= | 2 4
2 2 2 3 z 2 2 4 z 2 4 6
-3 + -- + 2 a - 8 z + ---- + 3 a z - 5 z + -- + a z - z
2 2 2
a a a |
In[18]:= | Kauffman[Knot[8, 9]][a, z] |
Out[18]= | 2 2
2 2 z z 3 2 2 z 4 z 2 2
-3 - -- - 2 a + -- + - + a z + a z + 12 z - ---- + ---- + 4 a z -
2 3 a 4 2
a a a a
3 3 4 4
4 2 4 z z 3 3 3 4 z 4 z 2 4
2 a z - ---- - -- - a z - 4 a z - 10 z + -- - ---- - 4 a z +
3 a 4 2
a a a
5 6 7
4 4 2 z 3 5 6 2 z 2 6 z 7
a z + ---- + 2 a z + 4 z + ---- + 2 a z + -- + a z
3 2 a
a a |
In[19]:= | {Vassiliev[2][Knot[8, 9]], Vassiliev[3][Knot[8, 9]]} |
Out[19]= | {-2, 0} |
In[20]:= | Kh[Knot[8, 9]][q, t] |
Out[20]= | 3 1 1 1 2 1 2 2
- + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 2 q t +
q 9 4 7 3 5 3 5 2 3 2 3 q t
q t q t q t q t q t q t
3 3 2 5 2 5 3 7 3 9 4
2 q t + q t + 2 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[8, 9], 2][q] |
Out[21]= | -12 2 5 6 2 12 10 7 20 12 11
25 + q - --- + -- - -- - -- + -- - -- - -- + -- - -- - -- - 11 q -
11 9 8 7 6 5 4 3 2 q
q q q q q q q q q
2 3 4 5 6 7 8 9 11
12 q + 20 q - 7 q - 10 q + 12 q - 2 q - 6 q + 5 q - 2 q +
12
q |